【刷题】BZOJ 3930 [CQOI2015]选数
Description
我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
Input
输入一行,包含4个空格分开的正整数,依次为N,K,L和H。
Output
输出一个整数,为所求方案数。
Sample Input
2 2 2 4
Sample Output
3
HINT
样例解释
所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5
Solution
我用的是莫比乌斯反演加杜教筛
这题本来不需要莫反的,但最近都在练习莫反,那就用莫反做了
设\(F(d)\)代表在\([L,R]\)中选N个数,它们的gcd为d及其倍数的方案数
设\(f(d)\)代表在\([L,R]\)中选N个数,它们的gcd为d的方案数
\]
上面式子的左边一半根据定义,右边一半的原因如下:
\(\lfloor \frac{R}{n} \rfloor\)其实是1到R中有多少个数整除n,\(\lfloor \frac{L-1}{n} \rfloor\)类似,那么它们相减之后,得到的就是\([L,R]\)中有多少个数可以整除n。根据题目的第一句话,我们知道选数是有序的,并且可以重复选。所以我们在得到了有多少个数整除n后,只要在里面有序地任选N个数,方案数是\((\lfloor \frac{R}{n} \rfloor-\lfloor \frac{L-1}{n} \rfloor)^N\),它们可以保证它们的gcd一定为n或n的倍数
接下来继续推
\]
改变枚举方式
\]
后面的东西整除分段加快速幂,前面的东西杜教筛
关于杜教筛,这里只给一个式子,有兴趣可以百度
\]
#include<bits/stdc++.h>
#define ll long long
const int Mod=1e9+7,MAXN=1e6+10,inf=0x3f3f3f3f;
int prime[MAXN],cnt,vis[MAXN],s[MAXN],mu[MAXN];
std::map<ll,ll> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
mu[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
for(register int i=1;i<MAXN;++i)s[i]=s[i-1]+mu[i];
}
inline ll qexp(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%Mod;
a=a*a%Mod;
b>>=1;
}
return res;
}
inline ll MuSum(int x)
{
if(x<MAXN)return s[x];
if(M[x])return M[x];
ll res=1;
for(register int i=2;;)
{
if(i>x)break;
int j=x/(x/i);
res-=(ll)(j-i+1)*(ll)MuSum(x/i);
i=j+1;
}
return M[x]=res;
}
inline ll solve(int N,int L,int H)
{
ll res=0;
for(register int i=1;;)
{
if(i>H)break;
int j=min(H/(H/i),L/i?L/(L/i):inf);
(res+=qexp((ll)(H/i-L/i),N)*(ll)(MuSum(j)-MuSum(i-1))%Mod)%=Mod;
i=j+1;
}
return (res+Mod)%Mod;
}
int main()
{
init();
int N,K,L,H;
read(N);read(K);read(L);read(H);
write(solve(N,(L-1)/K,H/K),'\n');
return 0;
}
【刷题】BZOJ 3930 [CQOI2015]选数的更多相关文章
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- bzoj 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- bzoj 3930: [CQOI2015]选数【递推】
妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...
- 【递推】BZOJ 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数【快速幂+容斥】
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- 【BZOJ】3930: [CQOI2015]选数
题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...
- 3930: [CQOI2015]选数
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1958 Solved: 979[Submit][Status][Discuss] Descripti ...
随机推荐
- Shader开发之烘焙Lightmap自发光
自己参考Build-in写了一套shader, 写完发现自发光部分在烘焙时不生效, 查阅资料发现需要在Material上设置为对应标记, 这部分功能可以像Standard Shader一样写在Shad ...
- Linux常用压缩解压命令
tar命令 解包:tar zxvf FileName.tar 打包:tar czvf FileName.tar DirName gz命令 解压1:gunzip FileName.gz 解压2:gzip ...
- 学习python最难的就是入门,而这文章刚好适合初学者!
Python可以应用于众多领域,如:数据分析.组件集成.网络服务.图像处理.数值计算和科学计算等众多领域.目前业内几乎所有大中型互联网企业都在使用Python,如:Youtube.Dropbox.BT ...
- 基于python的scrapy框架爬取豆瓣电影及其可视化
1.Scrapy框架介绍 主要介绍,spiders,engine,scheduler,downloader,Item pipeline scrapy常见命令如下: 对应在scrapy文件中有,自己增加 ...
- kali获得windows的shell后乱码
输入 chcp 65001
- [shell] bash数组(for时排序)
for处理时会自动把顺序按A-Z排序了 [root@XM-v106 ~]# bash b.sh A -> B -> C -> D -> E -> [root@XM-v10 ...
- hive的udf创建永久函数
上传jar包到hdfs目录中, hdfs dfs -put /home/user/hive-functions.jar /user/hive/jars/hive-functions.jar cre ...
- Thunder——Final冲刺中间产物
版本控制: http://www.cnblogs.com/lick468/p/7994015.html 软件功能说明书: http://www.cnblogs.com/szjzsd/p/7979565 ...
- 20172319 《Java程序设计教程》 第10周学习总结
20172319 2018.05.09-05.21 <Java程序设计教程>第10周学习总结 目录 教材学习内容总结 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周 ...
- 20162319 实验四 Android程序设计
Android Stuidio的安装测试: 完成Hello World, 要求修改res目录中的内容,Hello World后要显示自己的学号 ·实验过程 完成任务一,只需在Android应用程序文件 ...