解题:洛谷2257 YY的GCD
初见莫比乌斯反演
有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推
$\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)==prime]$
$\sum_{p∈prime}f(p)$
$\sum_{p∈prime} \sum_{d=1}^{min(n,m)} [p|d] μ(\frac{d}{p})g(d)$
套路的,改为枚举$\frac{d}{p}$
$\sum_{p∈prime} \sum_{d=1}^{min(\left\lfloor\frac{n}{p}\right\rfloor,\left\lfloor\frac{m}{p}\right\rfloor)}μ(d)g(dp)$
这时候可以换掉$g$了
$\sum_{p∈prime} \sum_{d=1}^{min(\left\lfloor\frac{n}{p}\right\rfloor,\left\lfloor\frac{m}{p}\right\rfloor)}μ(d)\left\lfloor\frac{n}{dp}\right\rfloor\left\lfloor\frac{m}{dp}\right\rfloor$
然后换回枚举现在的$dp$(即原来的$d$),交换求和号
$\sum\limits_{i=1}^{min(n,m)}\sum_{d|i\&\&d∈prime}μ(\frac{i}{d})\left\lfloor\frac{n}{i}\right\rfloor\left\lfloor\frac{m}{i}\right\rfloor$
$\sum\limits_{i=1}^{min(n,m)}\left\lfloor\frac{n}{i}\right\rfloor\left\lfloor\frac{m}{i}\right\rfloor\sum_{d|i\&\&d∈prime}μ(\frac{i}{d})$
于是数论分块,前面的直接算,后面的线性筛之后$O(n\log n)$预处理一下再做个前缀和
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int npr[N],pri[N],mul[N];
long long mulsum[N],ans;
int T,n,m,nm,cnt,maxx;
void prework()
{
register int i,j;
mul[]=,npr[]=true,maxx=;
for(i=;i<=maxx;i++)
{
if(!npr[i]) pri[++cnt]=i,mul[i]=-;
for(j=;j<=cnt&&1ll*i*pri[j]<=maxx;j++)
{
npr[i*pri[j]]=true;
if(i%pri[j]==) break;
else mul[i*pri[j]]=-mul[i];
}
}
for(i=;i<=maxx;i++)
for(j=;j<=cnt&&1ll*i*pri[j]<=maxx;j++)
mulsum[i*pri[j]]+=mul[i];
for(i=;i<=maxx;i++) mulsum[i]+=mulsum[i-];
}
int main()
{
register int i,j;
scanf("%d",&T),prework();
while(T--)
{
scanf("%d%d",&n,&m),ans=,nm=min(n,m);
for(i=;i<=nm;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans+=(mulsum[j]-mulsum[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}
解题:洛谷2257 YY的GCD的更多相关文章
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
- 洛谷 2257 - YY的GCD
莫比乌斯反演半模板题 很容易可以得到 \[Ans = \sum\limits_{p \in prime} \sum\limits_{d = 1}^{\min (\left\lfloor\frac{a} ...
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- 洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- 洛谷P2257 YY的GCD
今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 ...
- 洛谷P2257 YY的GCD(莫比乌斯反演)
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
随机推荐
- 打包一个传统的ASP.NET web app作为Docker镜像
(1)针对NerdDinner应用的Dockerfile内容如下 PS E:\DockeronWindows\Chapter02\ch02-nerd-dinner> cat .\Dockerfi ...
- leetcode第217.题存在重复元素
1.题目描述 给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 2.示例 2.1 输入: [1,2,3,1 ...
- python-python爬取豆果网(菜谱信息)
#-*- coding = utf-8 -*- #获取豆果网图片 import io from bs4 import BeautifulSoup import requests #爬取菜谱的地址 ur ...
- NO.2:自学tensorflow之路------BP神经网络编程
引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tens ...
- Vue实现双向绑定的原理以及响应式数据
一.vue中的响应式属性 Vue中的数据实现响应式绑定 1.对象实现响应式: 是在初始化的时候利用definePrototype的定义set和get过滤器,在进行组件模板编译时实现water的监听搜集 ...
- PSP Daily新增功能说明书
1.选择输入类别时可以记录原来的输入,支持用户选择记录清空功能 2.添加“恢复最近”button,点击这个按钮可以跳出一个页面显示最近的excel记录,用户可以通过勾选相应的excel文件名,恢复选中 ...
- sprint站立会议
索引卡: 工作认领: 时间 ...
- Android里面安装windows系统
安装前请确认以下条件:①:存储卡需要有大于302M的空间. 下载安装:1.下载文件并安装:①:下载地址:http://kuai.xunlei.com/d/hWIkAAIkJwAawgZUa3c ...
- C#编程概述
一个简单的c#程序 标识符 标识符是一种字符串,用来命名变量.方法.参数和许多后面将要阐述的其他程序结构. 关键字 所有C#关键字都由小写字母组成,但是.NET类型名使用Pascal大小写约定. Ma ...
- 30行js让你的rem弹性布局适配所有分辨率(含竖屏适配)(转载)
用rem来实现移动端的弹性布局是个好主意!用法如下: CSS @media only screen and (max-width: 320px), only screen and (max-devic ...