HDU3923-Invoker-polya n次二面体
polya定理。等价类的个数等于∑颜色数^置换的轮换个数
不可翻转的串当中。直接计算∑m^(gcd(n,i)) ,这里gcd(n,i)就是第i个置换的轮换数。
翻转的情况再分n奇偶讨论。
n次二面体都是这个套路。
/*--------------------------------------------------------------------------------------*/ #include <algorithm>
#include <iostream>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <cmath>
#include <set>
#include <map> //debug function for a N*M array
#define debug_map(N,M,G) printf("\n");for(int i=0;i<(N);i++)\
{for(int j=;j<(M);j++){\
printf("%d",G[i][j]);}printf("\n");}
//debug function for int,float,double,etc.
#define debug_var(X) cout<<#X"="<<X<<endl;
#define LL long long
const int INF = 0x3f3f3f3f;
const LL LLINF = 0x3f3f3f3f3f3f3f3f;
/*--------------------------------------------------------------------------------------*/
using namespace std; int N,M,T;
const LL MOD = 1e9+; LL pow_mod(LL x,LL cnt)
{
LL base = x,res = ;
while(cnt)
{
if(cnt&) {res*=base;res%=MOD;}
base *= base;base %= MOD;
cnt >>= ;
}
return res%MOD;
}
LL inv(LL x,LL m)
{
return pow_mod(x,m-);
}
LL polya(LL n,LL m)
{
LL res = ;
for(int i=;i<=n;i++)
{
res += pow_mod(m,__gcd((LL)i,n));
res %= MOD;
} if(n&) res += n*pow_mod(m,n/+);
else res += (n*pow_mod(m,n/))%MOD*inv(,MOD)%MOD + (n*pow_mod(m,n/+))%MOD*inv(,MOD)%MOD ; res %= MOD;
res *= inv(*n,MOD); return res%MOD;
} int main()
{
scanf("%d",&T);
int cas = ;
while(T--)
{
scanf("%d%d",&M,&N);
printf("Case #%d: %lld\n",++cas,polya(N,M));
}
}
HDU3923-Invoker-polya n次二面体的更多相关文章
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
- HDU 3923 Invoker(polya定理+逆元)
Invoker Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 122768/62768 K (Java/Others)Total Su ...
- HDU 3923 Invoker 【裸Polya 定理】
参考了http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 的模板 对于每一种染色,都有一个等价群,例如旋转, ...
- POJ2154 Color【 polya定理+欧拉函数优化】(三个例题)
由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问 ...
- 《程序设计中的组合数学》——polya计数
我们在高中的组合数学中常常会碰到有关涂色的问题,例如:用红蓝两种颜色给正方形的四个顶点涂色,会有几种不同的方案.在当时,我们下意识的认为,正方形的四个顶点是各不相同的,即正方形是固定的.而实际上我们知 ...
- Polya计数
Let it Bead Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5365 Accepted: 3585 Descr ...
- [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)
Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...
- polya/burnside 学习
参考链接: http://www.cnblogs.com/hankers/archive/2012/08/03/2622231.html http://blog.csdn.net/raalghul/a ...
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
随机推荐
- 学习随笔—Redis常用命令
info 服务器基本信息 monitor 实时转储收到的请求 flushdb 清空当前数据库 flushall 清空所有数据库 quit 关闭连接 save 将数据同步保持到磁盘 bgsave ...
- JDK中的并发bug?
最近研究Java并发,无意中在JDK8的System.console()方法的源码中翻到了下面的一段代码: private static volatile Console cons = null; / ...
- Android ANR分析
1.发生anr时手机会生产traces文件 拉取trace文件:adb pull data/anr/traces.txt ./mytraces.txt 保存路径 参考
- SVN同步大坑
遇到的问题 这两天一直在搞svn的主从备份,使用的方法是svnsync做的主从同步,同步大部分的仓库都没有什么问题很顺利的就同步完成了,不了解svnsync同步的可以看我这篇,但是在在同步2个仓库的时 ...
- hadooop2.6 job pending research
https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-common/ClusterSetup.html 我使用的是已经运行在 ...
- 译:Google的大规模集群管理工具Borg(二)------ Borg架构
3.Borg 架构 一个Borg的cell由一系列的机器组成,通常在cell运行着一个逻辑的中央控制器叫做Borgmaster,在cell中的每台机器上则运行着一个叫Borglet的代理进程.而Bor ...
- ZBrush中的Clip剪切笔刷怎么快速运用
Clip剪切笔刷可以对模型网格进行剪切操作,也可以叫做剪切笔刷.接下来看一下Clip切割笔刷在ZBrush中是如何使用的. 查看更多内容请直接前往:http://www.zbrushcn.com/ji ...
- javascript/jquery键盘事件介绍
一.首先需要知道的是:1.keydown()keydown事件会在键盘按下时触发.2.keyup()keyup事件会在按键释放时触发,也就是你按下键盘起来后的事件3.keypress()keypres ...
- Dijkstra求最短路径
单源点的最短路径问题:给定带权有向图G和源点V,求从V到G中其余各顶点的最短路径 Dijkstra算法描述如下: (1)用带权的邻接矩阵arcs表示有向图,arcs[i][j]表示弧<vi,vj ...
- 数据结构Java实现04----循环链表、仿真链表
单向循环链表 双向循环链表 仿真链表 一.单向循环链表: 1.概念: 单向循环链表是单链表的另一种形式,其结构特点是链表中最后一个结点的指针不再是结束标记,而是指向整个链表的第一个结点,从而使单链表形 ...