ROCK (RObust Clustering using linKs)  聚类算法‏是一种鲁棒的用于分类属性的聚类算法。该算法属于凝聚型的层次聚类算法。之所以鲁棒是因为在确认两对象(样本点/簇)之间的关系时考虑了他们共同的邻居(相似样本点)的数量,在算法中被叫做链接(Link)的概念。而一些聚类算法只关注对象之间的相似度。

ROCK 算法中用到的四个关键概念

  1. 邻居(Neighbors):如果两个样本点的相似度达到了阈值(θ),这两个样本点就是邻居。阈值(θ)有用户指定,相似度也是通过用户指定的相似度函数计算。常用的分类属性的相似度计算方法有:Jaccard 系数,余弦相似度。
  2. 链接(Links):两个对象的共同邻居数量
  3. 目标函数(Criterion Function):最大化下面目标函数以获得最优的聚类结果(最终簇之间的链接总数最小,而簇内的链接总数最大)。Ci:第i个簇,k:簇的个数,ni:Ci的大小(样本点的数量)。一般可使用f (θ) = (1-θ)/(1+θ). f(θ)一般具有以下性质:Ci中的每个样本点在Ci中有nif(θ)个邻居。(具体请见参考文献2)

4. 相似性的度量(Goodness Measure):使用该公式计算所有对象的两两相似度,将相似性最高的两个对象合并。通过该相似性度量不断的凝聚对象至k个簇,最终计算上面目标函数值必然是最大的。

,link[Ci,Cj]=

大概算法思路(伪代码请见参考文献2):

输入:需要聚类的个数-k,和相似度阈值-θ

算法:

  开始每个点都是单独的聚类,根据计算点与点间的相似度,生成相似度矩阵。

  根据相似度矩阵和相似度阈值-θ,计算邻居矩阵-A。如果两点相似度>=θ,取值1(邻居),否则取值0.

  计算链接矩阵-L=A x A

  计算相似性的度量(Goodness Measure),将相似性最高的两个对象合并。回到第2步进行迭代直到形成k个聚类或聚类的数量不在发生变换。

输出:

  簇和异常值(不一定存在)

ROCK in R - cba 包:


load('country.RData')
d<-dist(countries[,-1])
x<-as.matrix(d)
library(cba)
rc <- rockCluster(x, n=4, theta=0.2, debug=TRUE)
rc$cl
 

参考文献:

【1】http://www.enggjournals.com/ijcse/doc/IJCSE12-04-05-248.pdf

【2】http://www.cis.upenn.edu/~sudipto/mypapers/categorical.pdf

ROCK 聚类算法‏的更多相关文章

  1. 关于k-means聚类算法的matlab实现

    在数据挖掘中聚类和分类的原理被广泛的应用. 聚类即无监督的学习. 分类即有监督的学习. 通俗一点的讲就是:聚类之前是未知样本的分类.而是根据样本本身的相似性进行划分为相似的类簇.而分类 是已知样本分类 ...

  2. DBSCAN密度聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...

  3. 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

    其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...

  4. 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法

    转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...

  5. K-Means 聚类算法

    K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...

  6. BIRCH聚类算法原理

    在K-Means聚类算法原理中,我们讲到了K-Means和Mini Batch K-Means的聚类原理.这里我们再来看看另外一种常见的聚类算法BIRCH.BIRCH算法比较适合于数据量大,类别数K也 ...

  7. K-Means聚类算法原理

    K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体 ...

  8. FCM聚类算法介绍

    FCM算法是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小.模糊C均值算法是普通C均值算法的改进,普通C均值算法对于数据的划分是硬性的,而FCM则 ...

  9. 机器学习——利用K-均值聚类算法对未标注数据分组

    聚类是一种无监督的学习,它将相似的对象归到同一簇中.它有点像全自动分类.聚类方法几乎可以应用到所有对象,簇内的对象越相似,聚类的效果越好. K-均值(K-means)聚类算法,之所以称之为K-均值是因 ...

随机推荐

  1. webform页面传值和删除修改

    一.webform跨页面传值1.内置对象地址栏数据拼接 QueryString 优点:简单好用:速度快:不消耗服务器内存. 缺点:只能传字符串:保密性差(调转页面后在地址栏显示):长度有限.响应请求对 ...

  2. plupload简易应用 多图片上传显示预览以及删除

    <script> var uploader = new plupload.Uploader({ //实例化一个plupload上传对象 browse_button: 'btnBrowse' ...

  3. Spark 机器学习

    将Mahout on Spark 中的机器学习算法和MLlib中支持的算法统计如下: 主要针对MLlib进行总结 分类与回归 分类和回归是监督式学习; 监督式学习是指使用有标签的数据(LabeledP ...

  4. Servlet调用过程整理

  5. LINK : fatal error LNK1104: 无法打开文件“gtestd.lib”

    解决办法: 复制编译出来的gtestd.lib文件到D:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\lib目录下 我这里用的是vs2015 ...

  6. linux中时间的更改

    # tzselectPlease identify a location so that time zone rules can be set correctly.Please select a co ...

  7. locutus(phpjs) 的使用

    今天来介绍一个js的框架,这个框架的主要功能呢,是通过加载该类库,来实现php函数的调用 当然了,这并不是说php中所有的函数都能在js中使用,但很大一部分是可以的. 环境:mac + node v5 ...

  8. Android的Activity屏幕切换动画-左右滑动切换

    . --> 在Android开发过程中,经常会碰到Activity之间的切换效果的问题,下面介绍一下如何实现左右滑动的切换效果,首先了解一下Activity切换的实现,从Android2.0开始 ...

  9. Jenkins 笔记

    1.Jenkins是什么? 他是一个开源的自动化服务器,持续集成工具.由Java和上百个插件组成,支持编译,测试,部署任意的自动化项目. 2.怎么安装Jenkins? 方法一:从官网 https:// ...

  10. nginx apache负载均衡测试

    apache配置 (监听内网ip和端口) Listen 10.163.170.8:8001 Listen 10.163.170.8:8002 Listen 10.163.170.8:8003 < ...