初始的想法就是,结合不同的分类算法来给出综合的结果,会比较准确一些
称为ensemble methods or meta-algorithms,集成方法或元算法

集成方法有很多种,可以是不同算法之间的,也可以是同一个算法但不同参数设置之间的,也可以是将数据集分成多分给不同的分类器之间的
总的来说,有3个维度可以进行集成,算法,算法参数和数据集

下面简单介绍两种比较流行的元算法思路,

1. Building classifiers from randomly resampled data: bagging

bagging又称为bootstrap aggregating
想法比较简单,对大小为n的训练集做n次放回随机抽样,形成新的大小仍然为n的训练集
因为是放回随机抽样,新的训练集中可能有重复,某些训练集中的样本中新的训练集中也会没有
用这个方法,产生s个新的训练集,对同一个分类算法可以产生s个不同参数的分类器
使用时,让s个分类器,多数投票表决来决定最终的分类结果

比较典型的bagging算法,如随机森林(random forest)
首先采用bootstrap取样,用产生新的训练集生成决策树,并且用在新训练集中没有抽样到样本作为测试集
如果有S个新的训练集,就会产生S个决策树,所以称为森林
所谓随机,首先新训练集是随机抽样产生的
再者,在训练决策树的时候,每个树节点会随机选择m个特征(m<<M总特征数)
参考,http://zh.wikipedia.org/wiki/%E9%9A%8F%E6%9C%BA%E6%A3%AE%E6%9E%97

2. Boosting

下面主要介绍Boosting中最流行的AdaBoost算法,这里主要介绍实现,理论参考前一篇

我们使用单层决策树,即decision stump 决策树桩作为弱分类器
所谓decision stump,就是只对一个特征做一次划分的单节点的决策树

这个弱分类器足够简单,但是如果直接使用,基本没用,
比如对于底下这个很简单的训练集,用一个decision stump都无法完全正确分类,试着在x轴或y轴上做一次划分

虽然无法完全正确分类,但是我们需要找到误差最小的那个decision stump
方法很简单,在x和y的取值范围内,以一定的步长,遍历比较误差

先实现stump分类,
dataMatrix,一行表示一个训练样本,每列表示一个特征
dimen,表示哪个特征
threshVal,阀值
threshIneq,对于decision stump,只存在less than或greater than

def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):
retArray = ones((shape(dataMatrix)[0],1))
if threshIneq == 'lt': #lt,less than
retArray[dataMatrix[:,dimen] <= threshVal] = -1.0 #boolean indexing
else:
retArray[dataMatrix[:,dimen] > threshVal] = -1.0
return retArray

所以给定上面的参数,就是可以判断每个样本的分类是1或-1

下面给出求解最优stump分类器的算法,

参数中有个D向量,表示样本weight

因为这里是要找到加权样本误差最小的stump分类器

def buildStump(dataArr,classLabels,D):
dataMatrix = mat(dataArr); labelMat = mat(classLabels).T
m,n = shape(dataMatrix)
numSteps = 10.0; bestStump = {}; bestClasEst = mat(zeros((m,1)))
minError = inf #inf,python中表示无穷大
for i in range(n): #遍历每个特征
rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max(); #计算该特征上的取值范围
stepSize = (rangeMax-rangeMin)/numSteps #计算遍历步长
for j in range(-1,int(numSteps)+1): #以步长遍历该特征
for inequal in ['lt', 'gt']: #尝试划分的方向,less than或greater than
threshVal = (rangeMin + float(j) * stepSize)
predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal) #进行stump分类
errArr = mat(ones((m,1))) #初始化误差为1
errArr[predictedVals == labelMat] = 0 #计算误差,将分对的误差设为0
weightedError = D.T*errArr #计算加权误差
if weightedError < minError: #如果小于minError,说明我们找到更优的stump分类器
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump,minError,bestClasEst

好,现在可以给出AdaBoost算法的源码,

def adaBoostTrainDS(dataArr,classLabels,numIt=40):
weakClassArr = []
m = shape(dataArr)[0] #样本数
D = mat(ones((m,1))/m) #初始化样本weight,所有样本权值相等为1/m
aggClassEst = mat(zeros((m,1))) #累积分类结果
for i in range(numIt): #生成多少个弱分类器
bestStump,error,classEst = buildStump(dataArr,classLabels,D) #计算最优的stump分类器
print "D:",D.T
alpha = float(0.5*log((1.0-error)/max(error,1e-16))) #1.计算该分类器的权值
bestStump['alpha'] = alpha
weakClassArr.append(bestStump)
print "classEst: ",classEst.T
expon = multiply(-1*alpha*mat(classLabels).T,classEst)
D = multiply(D,exp(expon)) #2.更新样本权值
D = D/D.sum()
aggClassEst += alpha*classEst #3.更新累积分类结果
print "aggClassEst: ",aggClassEst.T
aggErrors = multiply(sign(aggClassEst) != #计算累积分类误差
mat(classLabels).T,ones((m,1)))
errorRate = aggErrors.sum()/m
print "total error: ",errorRate,"\n"
if errorRate == 0.0: break #4.误差为0,算法结束
return weakClassArr

其中,

1. 计算分类器权值的公式为,

max(error,1e-16),这个是为了防止error为0

2. 更新样本权值的公式为,

即判断正确时,减小权值,而错误时,增大权值

expon = multiply(-1*alpha*mat(classLabels).T,classEst)

-alpha×classLabel×classEst,即如果分类正确,classLable=classEst,仍然得到-alpha,否则得到alpha

3. aggClassEst

因为我们最终在分类时,是用多个弱分类器的综合结果

所以这里每生成一个弱分类器,我们就把它的分类结果加到aggClassEst上,aggClassEst += alpha*classEst

aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))

用于aggClassEst是float类型,所以先使用sign转换成1,-1,0

然后!= mat(classLabels).T,会产生一个boolean的向量

小技巧,这里为何要乘上一个全1的向量,因为需要把boolean类型转换为int

可以在python试下,

>>> (1 == 1) *1

1

4.最终当所有弱分类器综合误差为0时,就不需要继续迭代了

下面看看,如何用AdaBoost算法进行分类

def adaClassify(datToClass,classifierArr):
dataMatrix = mat(datToClass)
m = shape(dataMatrix)[0]
aggClassEst = mat(zeros((m,1)))
for i in range(len(classifierArr)):
classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\
classifierArr[i]['thresh'],\
classifierArr[i]['ineq'])
aggClassEst += classifierArr[i]['alpha']*classEst
print aggClassEst
return sign(aggClassEst)

 

Machine Learning in Action -- AdaBoost的更多相关文章

  1. 【机器学习实战】Machine Learning in Action 代码 视频 项目案例

    MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apa ...

  2. 学习笔记之机器学习实战 (Machine Learning in Action)

    机器学习实战 (豆瓣) https://book.douban.com/subject/24703171/ 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中 ...

  3. K近邻 Python实现 机器学习实战(Machine Learning in Action)

    算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据

    机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Ma ...

  6. 机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集

    机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米 ...

  7. 机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析

    机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018 ...

  8. 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记

    机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ...

  9. 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归

    机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...

随机推荐

  1. inner join、left join、right join等的区别

    left join :左连接,返回左表中所有的记录以及右表中连接字段相等的记录.right join :右连接,返回右表中所有的记录以及左表中连接字段相等的记录.inner join: 内连接,又叫等 ...

  2. 富士通F-02D 1630万像素翻盖手机docomo官方解锁送充电器

    此款富士通F-02D手机是非常漂亮的一款拿在手上十分有质感的日版翻盖手机.2011年11月上市的新款手机.1630万像素的高清摄像头,防水,带指纹锁,高清HDMI输出,非常漂亮的手机灯光设计,其性能配 ...

  3. java错题本

    1.判断题: Java程序一般应当含有main方法,因为它是所有JaVa程序执行的入口(错) 解析:applet(java小程序)不用,application(java应用程序)需要.(见java a ...

  4. Digital Image Processing 学习笔记3

    第三章 灰度变换与空间滤波 3.1 背景知识 3.1.1 灰度变换和空间滤波基础 本章节所讨论的图像处理技术都是在空间域进行的.可以表示为下式: $$g(x, y) = T[f(x,y)]$$ 其中$ ...

  5. POJ 1523 SPF tarjan求割点

                                                                   SPF Time Limit: 1000MS   Memory Limit ...

  6. POJ1797 Heavy Transportation(SPFA)

    题目要求1到n点的最大容量的增广路. 听说是最短路求的,然后乱搞就A了.. 大概能从Bellman-Ford的思想,dk[u]表示从源点出发经过最多k条边到达u点的最短路,上理解正确性. #inclu ...

  7. Week,Month, Year 日期区间辅助类

    我们在做一些业务系统的时候,经常会用到一些获取时间段的情况.比如要统计某一周.某月.某年 这样一些时间区间内的一些业务数据.这时候我们就需要获取当前时间段内的一些起止日期.这里分享一个通用的日期辅助类 ...

  8. 如何对Backbone.Collection进行过滤操作

    首先我想说的是这篇文章的题目起的很怪,因为我不知道起个什么名字比较好.渲染列表是我们应用中最常见的操作了吧,在运用Backbone的应用中,我们一般会把列表作为一个Collcetion,然后指定一个V ...

  9. JBPM4.4学习API

    一.流程引擎API org.jbpm.api.ProcessEngine是jbpm4所有的Service API 之源. 既所有的Service API(服务接口)都从ProcessEngine中获取 ...

  10. java编译自动化

    java编译自动化 http://h2ofly.blog.51cto.com/6834926/1545452?utm_source=tuicool&utm_medium=referral