Relevant Readable Links

Name

Interesting topic

Comment

Edwin Chen

非参贝叶斯

 

徐亦达老板

Dirichlet Process

学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM

Alex Kendall

Geometry and Uncertainty in Deep Learning for Computer Vision

语义分割

colah's blog

Feature Visualization

 

Jason Yosinski

Understanding Neural Networks Through Deep Visualization

 

田渊栋

general CV

alexisbcook

Global Average Pooling Layers for Object Localization

目标定位

Tombone

http://www.computervisionblog.com/

DL, CV and the algorithms that are shaping the future of AI.

Others:

http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html【理论总结挺好】

http://www.cnblogs.com/charlotte77/【统计机器学习,可能实用】

http://blog.csdn.net/zhangjunhit/article/list/1【论文阅读笔记不错】

专注于数据分析之Kaggle and 图像处理之AR on phone


How to be a Top AR Full-Stack Developer

正如该链接中所言,学习了哪些知识,计算机视觉才算入门?

计算机视觉涉及面甚广,找到一类问题好好研究并实践就好,这类问题在本博客就指AR问题。

Ref: 计算机视觉入门书?

列出现代计算机视觉体系的主要科目(知识点)及其递进关系。

一个单元代表一门course (12 weeks)或者一本book (600 pages)的学习量,亲测。

循序渐进很重要,后辈务必去掉大跃进的念头。

人工智能之计算机视觉 - 学术体系
第四层 计算机视觉:模型,学习,推理
第三层 统计机器学习 深度学习
第二层 机器学习入门 计算机视觉入门
第一层 统计推断 贝叶斯分析 多元线性分析 凸优化

编程是基本功,无须赘述。

人工智能之计算机视觉 - 软件工程
第四层 实践!实践!实践!
第三层 Android API, RN, OpenCV, Scikit-learning, ARToolkit, Unity
第二层 软件架构,设计模式,代码管理,单元测试
第一层 C/C++, Python, Java, Kotlin, Javascript, SQL

如上,乃基本的学习路线,仅是参考,仍可细分,但基本上具备了AR全栈开发者的潜力。

Phones with ARCore support, Feb, 2018

Indoor navigation app: you'll never be lost again

Inside Navigation【好东西,但时机不对】


My Hierarchy of AI Knowledge

实践阶段

如果你想要一个能走到冰箱面前而不撞到墙壁的机器人,那就使用 SLAM。

如果你想要一个能识别冰箱中各种物品的机器人,那就使用 Deep Learning。

基本上,这算一个风口;仅指路,不领路,需深耕。

增强现实 - Deep Learning 识别

综述:

[Object Tracking] Overview of Object Tracking

[Object Tracking] Overview of algorithms for Object Tracking

轮廓识别:

[Object Tracking] Active contour model - Snake Model

[Object Tracking] Deep Boundary detection Tech

[Object Tracking] Contour Detection through Tensorflow running on smartphone

[Object Tracking] Contour Detection through OpenCV

目标定位:

[OpenCV] Real-time object detection with dnn module in OpenCV 3.3

[Localization] SSD - Single Shot MultiBoxDetector

[Localization] MobileNet with SSD

[Tensorflow] Android Meets TF in TensorFlow Dev Summit 2017

[Tensorflow] Object Detection API - prepare your training data

[Tensorflow] Object Detection API - build your training environment

[Tensorflow] Object Detection API - predict through your exclusive model

[Tensorflow] Object Detection API - retrain mobileNet

[Tensorflow] Object Detection API - mobileNet_v1.py

[Object Tracking] Identify and Track Specific Object

[Object Tracking] MeanShift

增强现实 - SLAM 跟踪

[SLAM] 01. "Simultaneous Localization and Mapping"

[SLAM] 02. Some basic algorithms of 3D reconstruction

[SLAM] 03. ORB-SLAM2

[SLAM] AR Tracking based on which tools?

[ARCORE, Continue...]

冲刺阶段

已看到收敛趋势,查缺补漏,攻克难点疑点。

融会贯通方可运用自如,解决新问题。

生成式网络 - Conv & Deconv

[Paper] Before GAN: sparse coding

Continue...

深度学习概念 - UFLDL

[UFLDL] Basic Concept

[UFLDL] Linear Regression & Classification

[UFLDL] Dimensionality Reduction

[UFLDL] Generative Model

[UFLDL] Sparse Representation

[UFLDL] ConvNet

[UFLDL] Train and Optimize

深度学习理论 - Stats 385

[Stats385] Lecture 01-02, warm up with some questions

[Stats385] Lecture 03, Harmonic Analysis of Deep CNN

[Stats385] Lecture 04: Convnets from Probabilistic Perspective

[Stats385] Lecture 05: Avoid the curse of dimensionality

【暂时不实用,点到为止】

统计机器学习 - PRML

9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process
8. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders
7. [Bayesian] “我是bayesian我怕谁”系列 - Boltzmann Distribution
6. [Bayesian] “我是bayesian我怕谁”系列 - Markov and Hidden Markov Models
5. [Bayesian] “我是bayesian我怕谁”系列 - Continuous Latent Variables
4. [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference
3. [Bayesian] “我是bayesian我怕谁”系列 - Latent Variables
2. [Bayesian] “我是bayesian我怕谁”系列 - Exact Inference
1. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes with Prior

混沌阶段

打地基,处于强化学习初期的不稳定阶段,感谢马尔科夫收敛的性质,目标已收敛;自下向上,基本遵循循序渐进的学习过程,夯实知识体系。

了解领域内的疑难点,认识技术细节的价值,为下一阶段做准备。

内容多为早年整理,倾向于参考价值。

Bayesian Analysis

R与采样方法:

[Bayes] What is Sampling

[Bayes] Point --> Line: Estimate "π" by R

[Bayes] Point --> Hist: Estimate "π" by R

[Bayes] qgamma & rgamma: Central Credible Interval

[Bayes] Hist & line: Reject Sampling and Importance Sampling

[Bayes] runif: Inversion Sampling

[Bayes] dchisq: Metropolis-Hastings Algorithm

[Bayes] prod: M-H: Independence Sampler for Posterior Sampling

[Bayes] Metroplis Algorithm --> Gibbs Sampling

[Bayes] Parameter estimation by Sampling

[Bayes] openBUGS: this is not the annoying bugs in programming

 
PGM基础:
 

贝叶斯基础:

[BOOK] Applied Math and Machine Learning Basics

[Bayes] Multinomials and Dirichlet distribution

[Bayes] Understanding Bayes: A Look at the Likelihood

[Bayes] Understanding Bayes: Updating priors via the likelihood

[Bayes] Understanding Bayes: Visualization of the Bayes Factor

[Bayes] Why we prefer Gaussian Distribution

[Bayes] Improve HMM step by step

[Math] Unconstrained & Constrained Optimization

[Bayes] KL Divergence & Evidence Lower Bound

[Bayes] Variational Inference for Bayesian GMMs

[Bayes] Latent Gaussian Process Models

学习指南:

[Math] A love of late toward Mathematics - how to learn it?

[Bayes ML] This is Bayesian Machine Learning 【原文总结得相当好】

Deep Learning

理论:

[BOOK] Applied Math and Machine Learning Basics             【DL书基础,1至5章笔记】

[Hinton] Neural Networks for Machine Learning - Basic

[Hinton] Neural Networks for Machine Learning - Converage

[Hinton] Neural Networks for Machine Learning - RNN

[Hinton] Neural Networks for Machine Learning - Bayesian

[Hinton] Neural Networks for Machine Learning - Hopfield Nets and Boltzmann Machine

编程:

[Tensorflow] Architecture - Computational Graphs   【TF 框架】

[Tensorflow] Practice - The Tensorflow Way       【相对基础】

[Tensorflow] Cookbook - The Tensorflow Way   【前者的 Detail】

[Tensorflow] Cookbook - Neural Network           【代码基础写法】

[Tensorflow] Cookbook - CNN                            【卷积网络专题】

[Tensorflow] Cookbook - Object Classification based on CIFAR-10

[Tensorflow] Cookbook - Retraining Existing CNNs models - Inception Model

[Tensorflow] RNN - 01. Spam Prediction with BasicRNNCell

[Tensorflow] RNN - 02. Movie Review Sentiment Prediction with LSTM

[Tensorflow] RNN - 03. MultiRNNCell for Digit Prediction

[Tensorflow] RNN - 04. Work with CNN for Text Classification

[TensorBoard] Cookbook - Tensorboard

[TensorBoard] Train and Test accuracy simultaneous tracking

[TensorBoard] Name & Variable scope

训练:

[Converge] Gradient Descent - Several solvers

[Converge] Weight Initialiser

[Converge] Backpropagation Algorithm 【BP实现细节】

[Converge] Feature Selection in training of Deep Learning 【特性相关性的影响】

[Converge] Training Neural Networks 【cs231n-lec5&6,推荐】

[Converge] Batch Normalisation

卷积:

[CNN] What is Convolutional Neural Network 【导论】

[CNN] Understanding Convolution 【图像角度理解】

[CNN] Tool - Deep Visualization

模型:

[Model] LeNet-5 by Keras

[Model] AlexNet

[Model] VGG16

[Model] GoogLeNet

[Model] ResNet  

[Localization] R-CNN series for Localization and Detection

[Localization] YOLO: Real-Time Object Detection

[Localization] SSD - Single Shot MultiBoxDetector

[Localization] MobileNet with SSD

其他:

[GPU] CUDA for Deep Learning, why?

[GPU] DIY for Deep Learning Workstation

[Keras] Install and environment setting

[Keras] Develop Neural Network With Keras Step-By-Step

[GAN] *What is Generative networks 【导论,”生成式模型“有哪些,与”判别式模型“同级】

[GAN] How to use GAN - Meow Generator

[DQN] What is Deep Reinforcement Learning 【导论:此方向优先级低】

[Understanding] Compressive Sensing and Deep Model 【感知压缩,暂且不懂】

[DL] *Deep Learning for Industry - Wang Yi 【课外阅读】

Machine Learning

/* ML文件夹待整理 */

IR & NLP基础

检索:

[IR] Boolean retrieval

[IR] Index Construction

[IR] Compression

[IR] Tolerant Retrieval & Spelling Correction & Language Model

[IR] Probabilistic Model

[IR] Link Analysis

[IR] Ranking - top k

[IR] Evaluation

[IR] Information Extraction

[IR] Open Source Search Engines

[IR] Search Server - Sphinx

[IR] Concept Search and LSI

[IR] Concept Search and PLSA

[IR] Concept Search and LDA

压缩:

[IR] What is XML

[IR] XML Compression

[IR] Advanced XML Compression - ISX

[IR] Advanced XML Compression - XBW

[IR] XPath for Search Query

[IR] Graph Compression

[IR] Bigtable: A Distributed Storage System for Semi-Structured Data

[IR] Huffman Coding

[IR] Arithmetic Coding

[IR] Dictionary Coding

[IR] BWT+MTF+AC

[IR] String Matching

[IR] Suffix Trees and Suffix Arrays

[IR] Time and Space Efficiencies Analysis of Full-Text Index Techniques

[IR] Extraction-based Text Summarization

其他:

[IR] Word Embeddings

【以上内容需随recommended system一起再过一遍,完善体系】

AR基础

[Artoolkit] Marker Training

[Artoolkit] ARToolKit's SDK Structure on Android

[Artoolkit] Framework Analysis of nftSimple

[Artoolkit] kpmMatching & Tracking of nftSimple

[Artoolkit] Android Sample of nftSimple

[Artoolkit] Can I Use LGPL code for commercial application

[Artoolkit] Marker of nftSimple

[Artoolkit] ARSimpleNativeCarsProj for Multi Markers Tracking

[Unity3D] 01 - Try Unity3D

[Unity3D] 02 - ** Editor Scripting, Community Posts, Project Architecture

[Unity3D] 03 - Component of UI

[Unity3D] 04 - Event Manager

[Unity3D] 05 - Access to DB or AWS

【简单涉及3D建模知识点,非重点】

  

CV基础

概念:

[OpenCV] Install openCV in Qt Creator

[OpenCV] Basic data types - Matrix

[OpenCV] IplImage and Operation

[OpenCV] HighGUI

[OpenCV] Image Processing - Image Elementary Knowledge

[OpenCV] Image Processing - Grayscale Transform

[OpenCV] Image Processing - Frequency Domain Filtering

[OpenCV] Image Processing - Spatial Filtering

[OpenCV] Image Processing - Fuzzy Set

[OpenCV] Feature Extraction

[OpenCV] Feature Matching

[SLAM] Little about SLAM

[SLAM] Camera math knowledge

[Tango] Basic Knowledge

实践:

// 内容将合并,重新整理

[OpenCV] Samples 01: drawing【几何图案、文字等】

[OpenCV] Samples 02: [ML] kmeans【聚类算法】

[OpenCV] Samples 03: cout_mat【Mat计算能力】

[OpenCV] Samples 04: contours2【二值图案找轮廓】

[OpenCV] Samples 05: convexhull【散点的凸包轮廓】

[OpenCV] Samples 06: [ML] logistic regression【线性二分类】

[OpenCV] Samples 07: create_mask【鼠标圈图】

[OpenCV] Samples 08: edge【边缘检测】

[OpenCV] Samples 09: plImage <==> Mat【色域通道分离】

[OpenCV] Samples 10: imagelist_creator【图片地址list参数】

[OpenCV] Samples 11: image sequence【视频流提取】

[OpenCV] Samples 12: laplace【视频流处理】

[OpenCV] Samples 13: opencv_version【版本信息显示】

[OpenCV] Samples 14: kalman filter【预测下一个状态】

[OpenCV] Samples 15: Background Subtraction and Gaussian mixture models【背景差分】

[OpenCV] Samples 16: Decompose and Analyse RGB channels【色域通道分离】

[OpenCV] Samples 17: Floodfill【聚类算法】

[OpenCV] Samples 18: Load image and check its attributes【图片属性】

扩展:

[CNN] Face Detection

[Android Studio] Using Java to call OpenCV

[Android Studio] Using NDK to call OpenCV

[OpenCV] Install OpenCV 3.3 with DNN

[OpenCV] Install OpenCV 3.4 with DNN

趣码收集:

[Link] Face Swap Collection

[Link] Face Swap without DLIB【代码可用】

算法基础

[Algorithm] Deferred Acceptance Algorithm

[Algorithm] Beating the Binary Search algorithm – Interpolation Search, Galloping Search

[Algorithm] Warm-up puzzles

[Algorithm] Asymptotic Growth Rate

[Algorithm] Polynomial and FFT

[Algorithm] Maximum Flow

[Algorithm] String Matching and Hashing

[Optimization] Greedy method

[Optimization] Dynamic programming

[Optimization] Advanced Dynamic programming


Everything here starts from 2016

本人AI知识体系导航 - AI menu的更多相关文章

  1. 本人SW知识体系导航 - Programming menu

    将感悟心得记于此,重启程序员模式. js, py, c++, java, php 融汇之全栈系列 [Full-stack] 快速上手开发 - React [Full-stack] 状态管理技巧 - R ...

  2. 【人工智能】从零开始学好人工智能,AI知识体系和框架

    写在前面: 最近公司的业务方向开始向AI方向改变(人工智能+文娱),但是现阶段AI方面的知识还没有储备,所以作为测试,也开始学习这方面的知识,不掉队. 知识储备: 1.阶段一-高等数学       高 ...

  3. unity3d所要知道的基础知识体系大纲,可以对照着学习,不定期更新

    本文献给,想踏入3D游戏客户端开发的初学者. 毕业2年,去年开始9月开始转作手机游戏开发,从那时开始到现在一共面的游戏公司12家,其中知名的包括搜狐畅游.掌趣科技.蓝港在线.玩蟹科技.天神互动.乐元素 ...

  4. (转载)Unity3D所要知道的基础知识体系大纲,可以对照着学习,不定期更新

    本文献给,想踏入3D游戏客户端开发的初学者. 毕业2年,去年开始9月开始转作手机游戏开发,从那时开始到现在一共面的游戏公司12家,其中知名的包括搜狐畅游.掌趣科技.蓝港在线.玩蟹科技.天神互动.乐元素 ...

  5. [转]unity3d所要知道的基础知识体系大纲,可以对照着学习,不定期更新 ... ... ... ...

    本文献给,想踏入3d游戏客户端开发的初学者. 毕业2年,去年开始9月开始转作手机游戏开发,从那时开始到现在一共面的游戏公司12家,其中知名的包括搜狐畅游.掌趣科技.蓝港在线.玩蟹科技.天神互动.乐元素 ...

  6. 【重构前端知识体系之HTML】讲讲对HTML5的一大特性——语义化的理解

    [重构前端知识体系之HTML]讲讲对HTML5的一大特性--语义化的理解 引言 在讲什么是语义化之前,先看看语义化的背景. 在之前的文章中提到HTML最重要的特性,那就是标签.但是项目一大,标签多的看 ...

  7. Canvas 知识体系简单总结

    Canvas 知识体系简单总结 标签(空格分隔): HTML5 Canvas 本文原创,如需转载,请注明出处 前言 知识点零零散散,一个上午整理了一下,内容不多,方便记忆. 本文不是教程,如需教程移步 ...

  8. github上最全的资源教程-前端涉及的所有知识体系

    前面分享了前端入门资源汇总,今天分享下前端所有的知识体系. 个人站长对个人综合素质要求还是比较高的,要想打造多拉斯自媒体网站,不花点心血是很难成功的,学习前端是必不可少的一个环节, 当然你不一定要成为 ...

  9. android知识体系

    1.Android架构分为4层*应用程序层 Android会同一系列核心应用程序包一起发布,该应用程序包包括email客户端,SMS短消息程序,日历,地图,浏览器,联系人管理程序等.所有的应用程序都是 ...

随机推荐

  1. session与cookie的区别是什么?如果客户端禁用了cookie功能,将会对session有什么影响?

    cookie 和session 的区别: a.cookie数据存放在客户的浏览器上,session数据放在服务器上. b.cookie不是很安全,别人可以分析存放在本地的COOKIE并进行COOKIE ...

  2. 3ds max学习笔记(十)-- 实例操作(镜像和对齐)

    1,镜像 选择物体对象然后点击: 偏移:新对象距离轴心所在的直线的距离: 2.对齐 栗子: 选择小球,点击[对齐];鼠标放置在图种位置,点击鼠标左键 出现弹框 调整位置: 先选择对齐位置-->当 ...

  3. 3ds max学习笔记(一)--选择物体

    选择所有物体:编辑-->全选(快捷:ctrl+a),在其他空白地方点击则取消选择(或编辑-->选择不选)反选:选择一部分物体 --编辑--反选/ ctrl+i 快速反选加选物体:选择一部分 ...

  4. HashMap源码分析和应用实例的介绍

    1.HashMap介绍 HashMap 是一个散列表,它存储的内容是键值对(key-value)映射.HashMap 继承于AbstractMap,实现了Map.Cloneable.java.io.S ...

  5. JS的document.links函数使用示例

    ? <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title&g ...

  6. JavaScirpt对象原生方法

    Object.assign() Object.assign()方法用于合并对象,只会合并可枚举的属性 const obj1= {a: 1} const obj2 = Object.assign({}, ...

  7. Mac添加自定义启动图标到Launchpad

    1.使用Automator进行录制 2.选择Application 3.使用运行shell脚本 4.保存在应用程序 5.效果 参考: https://apple.stackexchange.com/q ...

  8. springboot获取properties文件的配置内容(转载)

    1.使用@Value注解读取读取properties配置文件时,默认读取的是application.properties. application.properties: demo.name=Name ...

  9. fastjson序列化乱序问题

    1.初始化为有序json对象 JSONObject jsonOrdered= new JSONObject(true); 2.将String对象转换过程中,不要调整顺序 JSONObject json ...

  10. Docker 集群Swarm创建和Swarm Web管理

    关于Docker Swarm更多的介绍请查看<Docker管理工具-Swarm部署记录> 一.环境配置 1.安装环境 # cat /etc/redhat-release CentOS Li ...