bzoj3894,懒得复制题面,戳我戳我

Solution:

  • 首先这是一个网络流,应该还比较好想,主要就是考虑建图了。
  • 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么想到割我也不知道,颓的题解),那么我们就可以从原点连向每个人,流量为文科愉悦值,然后每个人连向汇点,流量为理科愉悦值。因为要构成最小割,就相当与每条路径一定割一条。
  • 然后我们考虑周围人那个情况,拿文科做例子,我们可以从原点连到一个新点,流量为这个额外愉悦值,然后把这个新节点连向这个周围的五个点(或者四/三个点),理科反过来连到汇点即可,至于为什么这样子可以。下面是解释:



    我们假设割掉所以与原点(\(1\))与文科特殊情况的新点(\(5\))的那条边(假设为边\(A\),图中标记为\(1\))割掉,如果要不练通,显然所有与汇点相连的边都会要割掉,这时候这条\(A\)边显然可以不割,那么这两条边是不会同时留下的(这其实也是显然)
  • 然后我们可以求出最小割,每个割表示的是不选哪种情况,那么最小割就是舍弃的愉悦值最小的情况,我们拿所有愉悦值之和减去最小割即可
  • 貌似有点点卡常,用当前弧优化可以解决
  • 网络流/最小割/费用流的题要多做才会知道建模的套路,不然真的想不到qwq

Code:

//It is coded by ning-mew on 6.28
#include<bits/stdc++.h>
#define FOR for(int i=1;i<=n;i++) for(int j=1;j<=m;j++)
using namespace std; const int maxn=507,INF=1e9+7; int n,m,S=0,T=maxn*maxn*6-1,ANS=0;
int head[maxn*maxn*6],cnt=-1,last[maxn*maxn*6];
struct Edge{int nxt,to,dis;}edge[maxn*maxn*25];
int art[maxn][maxn],sce[maxn][maxn];
int same_art[maxn][maxn],same_sce[maxn][maxn];
int add_x[5]={0,0,0,1,-1},add_y[5]={0,1,-1,0,0}; int Node(int x,int y,int num){
return n*m*(num-1)+(x-1)*m+y;
}
void add(int from,int to,int dis){
edge[++cnt].nxt=head[from];edge[cnt].to=to;
edge[cnt].dis=dis;head[from]=cnt;
}
void Add(int from,int to,int dis){
//cout<<from<<' '<<to<<' '<<dis<<endl;
add(from,to,dis);add(to,from,0);return;
}
struct Network{
int depth[maxn*maxn*6],mark[maxn*maxn*6];
void clear(){
memset(depth,0,sizeof(depth));
memset(mark,0,sizeof(mark));
}
bool bfs(int x){
queue<int>Q;while(!Q.empty())Q.pop();
Q.push(S);depth[S]=1;mark[S]=x;
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int i=head[u];i!=-1;i=edge[i].nxt){
int v=edge[i].to;
if(mark[v]!=x&&edge[i].dis>0){
mark[v]=x;depth[v]=depth[u]+1;
Q.push(v);
}
}
}if(mark[T]==x)return true;return false;
}
int dfs(int u,int dist){
if(u==T)return dist;int d=0;
for(int &i=last[u];i!=-1;i=edge[i].nxt){
int v=edge[i].to;
if(mark[v]==mark[u]&&depth[v]==depth[u]+1&&edge[i].dis>0){
d=dfs(v,min(edge[i].dis,dist));
if(d){
edge[i].dis-=d;edge[i^1].dis+=d;
return d;
}
}
}return 0;
}
int Dinic(){ clear();
int ans=0,d=0,x=2;
while(bfs(++x)){
d=dfs(S,INF);
while(d){/*cout<<"Dinic:"<<d<<endl;*/ans+=d;d=dfs(S,INF);}
for(int i=0;i<=m*n*4;i++)last[i]=head[i];last[T]=head[T];
}return ans;
} }Net;
int main(){
scanf("%d%d",&n,&m);
memset(head,-1,sizeof(head));
FOR scanf("%d",&art[i][j]),ANS+=art[i][j],
Add(S,Node(i,j,1),art[i][j]),Add(Node(i,j,1),Node(i,j,2),INF);
FOR scanf("%d",&sce[i][j]),ANS+=sce[i][j],
Add(Node(i,j,2),T,sce[i][j]);
FOR {
scanf("%d",&same_art[i][j]);ANS+=same_art[i][j];
Add(S,Node(i,j,3),same_art[i][j]);
for(int k=0;k<=4;k++){
int ii=i+add_x[k],jj=j+add_y[k];
if(ii>0&&ii<=n&&jj>0&&jj<=m){
Add(Node(i,j,3),Node(ii,jj,1),INF);
}
}
}
FOR {
scanf("%d",&same_sce[i][j]);ANS+=same_sce[i][j];
Add(Node(i,j,4),T,same_sce[i][j]);
for(int k=0;k<=4;k++){
int ii=i+add_x[k],jj=j+add_y[k];
if(ii>0&&ii<=n&&jj>0&&jj<=m){
Add(Node(ii,jj,2),Node(i,j,4),INF);
}
}
}
printf("%d\n",ANS-Net.Dinic());
return 0;
}

博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会终生找不到妹子!!!

【题解】 bzoj3894: 文理分科 (网络流/最小割)的更多相关文章

  1. 【bzoj3894】文理分科 网络流最小割

    原文地址:http://www.cnblogs.com/GXZlegend 题目描述 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用 ...

  2. [Bzoj3894]文理分科(最小割)

    Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格子代表一个同学的座位.每位 ...

  3. D - 文理分科 (网络流->最小割)

    题目链接:https://cn.vjudge.net/contest/281959#problem/D 题目大意:中文题目 具体思路:我们需要求出最大的满意值,从另一方面想,我们可以求出总的满意值,然 ...

  4. 【BZOJ3894】文理分科(最小割)

    [BZOJ3894]文理分科(最小割) 题面 BZOJ Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个 ...

  5. BZOJ_3894_文理分科&&BZOJ_2127_happiness_最小割

    BZOJ_3894_文理分科_最小割 Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进 ...

  6. [BZOJ 3894] 文理分科 【最小割】

    题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...

  7. bzoj 3894 文理分科【最小割+dinic】

    谁说这道和2127是双倍经验的来着完全不一样啊? 数组开小会TLE!数组开小会TLE!数组开小会TLE! 首先sum统计所有收益 对于当前点\( (i,j) \)考虑,设\( x=(i-1)*m+j ...

  8. 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割

    题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...

  9. Bzoj3894 文理分科

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 667  Solved: 389 Description  文理分科是一件很纠结的事情!(虽然看到这个题 ...

随机推荐

  1. Luogu3199 HNOI2009 最小圈 分数规划、SPFA

    传送门 可以发现它的式子是一个分数规划的式子,所以可以二分答案,将所有边权减掉当前二分值之后跑一边$SPFA$判断负环即可. 然而这道题把$BFS-SPFA$卡掉了却没卡$DFS-SPFA$ 出题人: ...

  2. React-使用combineReducers完成对数据对拆分管理

    数据都放在reducer.js下不利于对数据进行管理,可以把一个大的reducer.js拆分成多个小的reducer.js. 小的reducer.js const defaultState={ foc ...

  3. thymeleaf参考手册

    1.创建 html <!DOCTYPE html><html xmlns:th="http://www.thymeleaf.org"></html&g ...

  4. 【SDOI2017】数字表格

    题面 题解 这道题目还有一种比较有意思的解法. 定义一种运算\((\mathbf f\oplus\mathbf g)(x) = \prod\limits_{d\mid x}\mathbf f(d)^{ ...

  5. springboot @Value 获取计算机中绝对路径文件的内容

    默认情况下使用 @Value("aaa.txt") private Resource txtResource; 这样获取到的是项目classpath 下的 aaa.txt 如果想获 ...

  6. Roslyn入门(一)-C#语法分析

    演示环境 Visual Studio 2017 .NET Compiler Platform SDK 简介 今天,Visual Basic和C#编译器是黑盒子:输入文本然后输出字节,编译管道的中间阶段 ...

  7. .net core实践系列之短信服务-为什么选择.net core(开篇)

    前言 从今天我将会写.net core实战系列,以我最近完成的短信服务作为例子.该系列将会尽量以最短的时间全部发布出来.源码也将优先开源出来给大家. 源码地址:https://github.com/S ...

  8. JDK8漫谈——增强接口

    解决什么问题 向下兼容.添加方法,所有的实现类必须实现此方法,否则会编译报错.这意味着每一次的接口升级都会伤筋动骨.但是这是一把双刃剑一定要把握好场景,不要滥用. 类爆炸.使用时,需要辅助类.即要记忆 ...

  9. Unity Jobsystem 详解实体组件系统ECS

    原文摘选自Unity Jobsystem 详解实体组件系统ECS 简介 随着ECS的加入,Unity基本上改变了软件开发方面的大部分方法.ECS的加入预示着OOP方法的结束.随着实体组件系统ECS的到 ...

  10. apacheTomcat

    Window+R ------>cmd || Window PowerShell apacheTomcat\bin> ./startup.sh