一本通1548【例 2】A Simple Problem with Integers
1548:【例 2】A Simple Problem with Integers
题目描述
这是一道模板题。
给定数列 a[1],a[2],…,a[n],你需要依次进行 q 个操作,操作有两类:
1 l r x:给定 l,r,x,对于所有 i∈[l,r],将 a[i] 加上 x(换言之,将 a[l],a[l+1],…,a[r] 分别加上 x);2 l r:给定 l,r,求 a[i]∑i=[l,r].a[i] 的值(换言之,求 a[l]+a[l+1]+⋯+a[r] 的值)。
输入格式
第一行包含 2 个正整数 n,q,表示数列长度和询问个数。保证 1≤n,q≤10^6。
第二行 n 个整数 a[1],a[2],…,a[n],表示初始数列。保证 ∣a[i]∣≤10^6。
接下来 q 行,每行一个操作,为以下两种之一:
1 l r x:对于所有 i∈[l,r],将 a[i] 加上 x;2 l r:输出 a[i]∑i=[l,r]a[i] 的值。
保证 1≤l≤r≤n, ∣x∣≤10^6。
输出格式
对于每个 2 l r 操作,输出一行,每行有一个整数,表示所求的结果。
样例
样例输入
5 10
2 6 6 1 1
2 1 4
1 2 5 10
2 1 3
2 2 3
1 2 2 8
1 2 3 7
1 4 4 10
2 1 2
1 4 5 6
2 3 4
样例输出
15
34
32
33
50
数据范围与提示
对于所有数据,1≤n,q≤10^6, ∣a[i]∣≤10^6, 1≤l≤r≤n, ∣x∣≤10^6。
sol:树状数组模板题 想想怎么支持区间修改,
1)【区间修改单点查询】例如[L,R]这段区间+Tag,就是a[L]+Tag,a[R+1]-Tag
2)【区间修改区间查询】基于差分的思想 先想象一个d数组维护差分值 d[i]=a[i]-a[i-1],基于差分的思想
a[i]=d[1]+d[2]+···+d[i-1]+d[i],所以a[1~p]就是
,其中d[1]用了p次,d[2]用了p-1次,
转化一下可得
,所以我们可以维护两个前缀和,
S1[i]=d[i],S2[i]=d[i]*i
查询:位置Pos的前缀和就是(Pos+1)*S1中1到Pos的和 减去 S2中1到Pos的和,[L,R]=SS[R]-SS[L-1]
修改:[L,R] S1:S1[L]+Tag,S1[R+1]-Tag S2:S2[L]+Tag*L ,S2[R+1]-Tag*(R+1)
#include <bits/stdc++.h>
using namespace std;
inline int read()
{
int s=,f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-');
ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^);
ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(long long x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x<)
{
putchar(x+'');
return;
}
write(x/);
putchar((x%)+'');
return;
}
inline void writeln(long long x)
{
write(x);
putchar('\n');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) writeln(x)
const int N=;
int n,m,a[N];
struct BIT
{
long long S1[N],S2[N];
#define lowbit(x) ((x)&(-x))
inline void Ins(int Pos,int Tag)
{
int PP=Pos;
while(PP<=n)
{
S1[PP]+=Tag;
S2[PP]+=1LL*Pos*Tag;
PP+=lowbit(PP);
}
return;
}
inline long long Que(int Pos)
{
long long Sum=;
int PP=Pos;
while(PP>)
{
Sum+=1LL*(1LL*(Pos+)*S1[PP]-S2[PP]);
PP-=lowbit(PP);
}
return Sum;
}
}T;
int main()
{
int i;
R(n); R(m);
for(i=;i<=n;i++)
{
R(a[i]);
T.Ins(i,a[i]-a[i-]);
}
for(i=;i<=m;i++)
{
int opt,a,b,Tag;
R(opt); R(a); R(b);
switch (opt)
{
case :
R(Tag);
T.Ins(a,Tag);
T.Ins(b+,-Tag);
break;
case :
Wl(1LL*T.Que(b)-1LL*T.Que(a-));
break;
}
}
return ;
}
/*
input
5 10
2 6 6 1 1
2 1 4
1 2 5 10
2 1 3
2 2 3
1 2 2 8
1 2 3 7
1 4 4 10
2 1 2
1 4 5 6
2 3 4
output
15
34
32
33
50
*/
一本通1548【例 2】A Simple Problem with Integers的更多相关文章
- 线段树:POJ3468-A Simple Problem with Integers(线段树注意事项)
A Simple Problem with Integers Time Limit: 10000MS Memory Limit: 65536K Description You have N integ ...
- POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)
A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...
- POJ 3468 A Simple Problem with Integers(线段树/区间更新)
题目链接: 传送门 A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Description Yo ...
- poj 3468:A Simple Problem with Integers(线段树,区间修改求和)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 58269 ...
- ACM: A Simple Problem with Integers 解题报告-线段树
A Simple Problem with Integers Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%lld & %l ...
- poj3468 A Simple Problem with Integers (线段树区间最大值)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 92127 ...
- POJ3648 A Simple Problem with Integers(线段树之成段更新。入门题)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 53169 Acc ...
- BZOJ-3212 Pku3468 A Simple Problem with Integers 裸线段树区间维护查询
3212: Pku3468 A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 128 MB Submit: 1278 Sol ...
- POJ 3468 A Simple Problem with Integers(线段树区间更新区间查询)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 92632 ...
随机推荐
- PAT A1141 PAT Ranking of Institutions (25 分)——排序,结构体初始化
After each PAT, the PAT Center will announce the ranking of institutions based on their students' pe ...
- JS数组的需要注意的问题
一.在js中数组是我们经常使用的数据类型,也为我们提供了很多方法.但是有些方法需要注意使用: 1.indexOf(args):匹配一个数组中与args相等的项的索引位置,如果该数组包含这个匹配项则返回 ...
- 【NOIP2017 D1T3】逛公园
NOIP2017 D1T3 逛公园 题意:给一个有向图,每条边有权值,问从\(1\)到\(N\)的长度不超过最短路长度\(+K\)的路径条数.如果有无数条则输出\(-1\). 思路:我们首先扔掉\(- ...
- ThreadLocal可能引起的内存泄露
threadlocal里面使用了一个存在弱引用的map,当释放掉threadlocal的强引用以后,map里面的value却没有被回收.而这块value永远不会被访问到了. 所以存在着内存泄露. 最好 ...
- 使用Windows API进行串口编程
使用Windows API进行串口编程 串口通信一般分为四大步:打开串口->配置串口->读写串口->关闭串口,还可以在串口上监听读写等事件.1.打开和关闭串口Windows中串口 ...
- 一篇文章让你彻底掌握 shell 语言
一篇文章让你彻底掌握 shell 语言 由于 bash 是 Linux 标准默认的 shell 解释器,可以说 bash 是 shell 编程的基础. 本文主要介绍 bash 的语法,对于 linux ...
- 窥看 SpringBoot 的原理与使用
一:SpringBoot的启动 1. 继承spring-boot-starter-parent项目 2. 导入spring-boot-dependencies项目依赖 二:Spring Boot 主类 ...
- CF293B Distinct Paths 搜索
传送门 首先数据范围很假 当\(N + M - 1 > K\)的时候就无解 所以对于所有要计算的情况,\(N + M \leq 11\) 超级小是吧,考虑搜索 对于每一个格子试填一个数 对于任意 ...
- Nowcoder 牛客练习赛23
Preface 终于知道YKH他们为什么那么喜欢打牛客网了原来可以抽衣服 那天晚上有空就也去玩了下,刷了一波水TM的YKH就抽到了,我当然是没有了 题目偏水,好像都是1A的.才打了一个半小时,回家就直 ...
- 发布了一个基于jieba分词的ElasticSearch插件
github地址: https://github.com/hongfuli/elasticsearch-analysis-jieba 基于 jieba 的 elasticsearch 中文分词插件. ...