1548:【例 2】A Simple Problem with Integers

题目描述

这是一道模板题。

给定数列 a[1],a[2],…,a[n],你需要依次进行 q 个操作,操作有两类:

  • 1 l r x:给定 l,r,x,对于所有 i∈[l,r],将 a[i] 加上 x(换言之,将 a[l],a[l+1],…,a[r] 分别加上 x);
  • 2 l r:给定 l,r,求 a[i]∑i=[l,r].​a[i] 的值(换言之,求 a[l]+a[l+1]+⋯+a[r] 的值)。

输入格式

第一行包含 2 个正整数 n,q,表示数列长度和询问个数。保证 1≤n,q≤10^6。
第二行 n 个整数 a[1],a[2],…,a[n],表示初始数列。保证 ∣a[i]∣≤10^6。
接下来 q 行,每行一个操作,为以下两种之一:

  • 1 l r x:对于所有 i∈[l,r],将 a[i] 加上 x;
  • 2 l r:输出 a[i]∑i=[l,r]​a[i] 的值。

保证 1≤l≤r≤n, ∣x∣≤10^6。

输出格式

对于每个 2 l r 操作,输出一行,每行有一个整数,表示所求的结果。

样例

样例输入

5 10
2 6 6 1 1
2 1 4
1 2 5 10
2 1 3
2 2 3
1 2 2 8
1 2 3 7
1 4 4 10
2 1 2
1 4 5 6
2 3 4

样例输出

15
34
32
33
50

数据范围与提示

对于所有数据,1≤n,q≤10^6, ∣a[i]∣≤10^6, 1≤l≤r≤n, ∣x∣≤10^6。

sol:树状数组模板题 想想怎么支持区间修改,

1)【区间修改单点查询】例如[L,R]这段区间+Tag,就是a[L]+Tag,a[R+1]-Tag

2)【区间修改区间查询】基于差分的思想 先想象一个d数组维护差分值 d[i]=a[i]-a[i-1],基于差分的思想

a[i]=d[1]+d[2]+···+d[i-1]+d[i],所以a[1~p]就是,其中d[1]用了p次,d[2]用了p-1次,

转化一下可得,所以我们可以维护两个前缀和,

S1[i]=d[i],S2[i]=d[i]*i

查询:位置Pos的前缀和就是(Pos+1)*S1中1到Pos的和 减去 S2中1到Pos的和,[L,R]=SS[R]-SS[L-1]

修改:[L,R]   S1:S1[L]+Tag,S1[R+1]-Tag   S2:S2[L]+Tag*L ,S2[R+1]-Tag*(R+1)

#include <bits/stdc++.h>
using namespace std;
inline int read()
{
int s=,f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-');
ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^);
ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(long long x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x<)
{
putchar(x+'');
return;
}
write(x/);
putchar((x%)+'');
return;
}
inline void writeln(long long x)
{
write(x);
putchar('\n');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) writeln(x)
const int N=;
int n,m,a[N];
struct BIT
{
long long S1[N],S2[N];
#define lowbit(x) ((x)&(-x))
inline void Ins(int Pos,int Tag)
{
int PP=Pos;
while(PP<=n)
{
S1[PP]+=Tag;
S2[PP]+=1LL*Pos*Tag;
PP+=lowbit(PP);
}
return;
}
inline long long Que(int Pos)
{
long long Sum=;
int PP=Pos;
while(PP>)
{
Sum+=1LL*(1LL*(Pos+)*S1[PP]-S2[PP]);
PP-=lowbit(PP);
}
return Sum;
}
}T;
int main()
{
int i;
R(n); R(m);
for(i=;i<=n;i++)
{
R(a[i]);
T.Ins(i,a[i]-a[i-]);
}
for(i=;i<=m;i++)
{
int opt,a,b,Tag;
R(opt); R(a); R(b);
switch (opt)
{
case :
R(Tag);
T.Ins(a,Tag);
T.Ins(b+,-Tag);
break;
case :
Wl(1LL*T.Que(b)-1LL*T.Que(a-));
break;
}
}
return ;
}
/*
input
5 10
2 6 6 1 1
2 1 4
1 2 5 10
2 1 3
2 2 3
1 2 2 8
1 2 3 7
1 4 4 10
2 1 2
1 4 5 6
2 3 4
output
15
34
32
33
50
*/

一本通1548【例 2】A Simple Problem with Integers的更多相关文章

  1. 线段树:POJ3468-A Simple Problem with Integers(线段树注意事项)

    A Simple Problem with Integers Time Limit: 10000MS Memory Limit: 65536K Description You have N integ ...

  2. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

  3. POJ 3468 A Simple Problem with Integers(线段树/区间更新)

    题目链接: 传送门 A Simple Problem with Integers Time Limit: 5000MS     Memory Limit: 131072K Description Yo ...

  4. poj 3468:A Simple Problem with Integers(线段树,区间修改求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 58269   ...

  5. ACM: A Simple Problem with Integers 解题报告-线段树

    A Simple Problem with Integers Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%lld & %l ...

  6. poj3468 A Simple Problem with Integers (线段树区间最大值)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92127   ...

  7. POJ3648 A Simple Problem with Integers(线段树之成段更新。入门题)

    A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 53169 Acc ...

  8. BZOJ-3212 Pku3468 A Simple Problem with Integers 裸线段树区间维护查询

    3212: Pku3468 A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 128 MB Submit: 1278 Sol ...

  9. POJ 3468 A Simple Problem with Integers(线段树区间更新区间查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92632   ...

随机推荐

  1. PAT A1141 PAT Ranking of Institutions (25 分)——排序,结构体初始化

    After each PAT, the PAT Center will announce the ranking of institutions based on their students' pe ...

  2. JS数组的需要注意的问题

    一.在js中数组是我们经常使用的数据类型,也为我们提供了很多方法.但是有些方法需要注意使用: 1.indexOf(args):匹配一个数组中与args相等的项的索引位置,如果该数组包含这个匹配项则返回 ...

  3. 【NOIP2017 D1T3】逛公园

    NOIP2017 D1T3 逛公园 题意:给一个有向图,每条边有权值,问从\(1\)到\(N\)的长度不超过最短路长度\(+K\)的路径条数.如果有无数条则输出\(-1\). 思路:我们首先扔掉\(- ...

  4. ThreadLocal可能引起的内存泄露

    threadlocal里面使用了一个存在弱引用的map,当释放掉threadlocal的强引用以后,map里面的value却没有被回收.而这块value永远不会被访问到了. 所以存在着内存泄露. 最好 ...

  5. 使用Windows API进行串口编程

    使用Windows API进行串口编程   串口通信一般分为四大步:打开串口->配置串口->读写串口->关闭串口,还可以在串口上监听读写等事件.1.打开和关闭串口Windows中串口 ...

  6. 一篇文章让你彻底掌握 shell 语言

    一篇文章让你彻底掌握 shell 语言 由于 bash 是 Linux 标准默认的 shell 解释器,可以说 bash 是 shell 编程的基础. 本文主要介绍 bash 的语法,对于 linux ...

  7. 窥看 SpringBoot 的原理与使用

    一:SpringBoot的启动 1. 继承spring-boot-starter-parent项目 2. 导入spring-boot-dependencies项目依赖 二:Spring Boot 主类 ...

  8. CF293B Distinct Paths 搜索

    传送门 首先数据范围很假 当\(N + M - 1 > K\)的时候就无解 所以对于所有要计算的情况,\(N + M \leq 11\) 超级小是吧,考虑搜索 对于每一个格子试填一个数 对于任意 ...

  9. Nowcoder 牛客练习赛23

    Preface 终于知道YKH他们为什么那么喜欢打牛客网了原来可以抽衣服 那天晚上有空就也去玩了下,刷了一波水TM的YKH就抽到了,我当然是没有了 题目偏水,好像都是1A的.才打了一个半小时,回家就直 ...

  10. 发布了一个基于jieba分词的ElasticSearch插件

    github地址: https://github.com/hongfuli/elasticsearch-analysis-jieba 基于 jieba 的 elasticsearch 中文分词插件. ...