传送门

题意:给出一张$N$个点,最开始没有边的图,$M$次操作,操作为加入边(边权为当前的操作编号)、删除前$K$大边、撤销前一次操作,每一次操作后询问最小生成树边权和。$N \leq 3 \times 10^5 , M \leq 5 \times 10^5$


可以发现可以直接大力用并查集做,因为一条边只要合并了两个集合就能产生贡献。

关于删除可以将边的加入扔到栈里面,删除的时候不断弹栈即可。

撤销操作对于加边就是删掉了一条边,而对于删边就相当于什么都不做,直接做即可。

加入每一条边之后的答案要一起放在栈里面,这样删边+撤销的答案询问就可以$O(1)$解决。

 #include<bits/stdc++.h>
 using namespace std;

 inline int read(){
     ;
     ;
     char c = getchar();
     while(!isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }

  , MAXM = ;
 int fa[MAXN] , size[MAXN] , top , N , M , lasStep;
 ];
 bool isadd;
 ];

 inline int find(int x){
     while(fa[x] != x)
         x = fa[x];
     return x;
 }

 inline void init(){
      ; i <= N ; i++){
         fa[i] = i;
         size[i] = ;
     }
 }

 inline void merge(int a , int b , int k){
     a = find(a);
     b = find(b);
     if(a != b){
         if(size[a] > size[b])
             swap(a , b);
         fa[a] = b;
         size[b] += size[a];
         s[++top][] = a;
         s[top][] = b;
         s[top][] = s[top - ][] + k;
         s[top][] = s[top - ][] + ;
     }
     else{
         s[top][] = s[++top][] = ;
         s[top][] = s[top - ][];
         s[top][] = s[top - ][];
     }
 }

 inline void pop(int k){
     while(k--){
         ]){
             size[s[top][]] -= size[s[top][]];
             fa[s[top][]] = s[top][];
         }
             top--;
 }
 }

 int main(){
     N = read();
     M = read();
     init();
     scanf("%s",ss);
      ; i <= M ; i++){
         ] == 'A'){
             merge(read() , read() , i);
             cout << (s[top][] == N -  ? s[top][] : 0ll) << '\n';
             if(i == M)
                 break;
             scanf("%s",ss);
             ] == 'R')
                 pop();
         }
         else
             ] == 'D'){
                 lasStep = read();
                 cout << (s[top - lasStep][] == N -  ? s[top - lasStep][] : 0ll) << '\n';
                 if(i == M)
                     break;
                 scanf("%s",ss);
                 ] != 'R')
                     pop(lasStep);
             }
             else{
                 cout << (s[top][] == N -  ? s[top][] : 0ll) << '\n';
                 if(i == M)
                     break;
                 scanf("%s",ss);
             }
     }
     ;
 }

UOJ14 DZY Loves Graph 并查集的更多相关文章

  1. UOJ_14_【UER #1】DZY Loves Graph_并查集

    UOJ_14_[UER #1]DZY Loves Graph_并查集 题面:http://uoj.ac/problem/14 考虑只有前两个操作怎么做. 每次删除一定是从后往前删,并且被删的边如果不是 ...

  2. UOJ14 DZY Loves Graph

    DZY开始有 nn 个点,现在他对这 nn 个点进行了 mm 次操作,对于第 ii 个操作(从 11 开始编号)有可能的三种情况: Add a b: 表示在 aa 与 bb 之间连了一条长度为 ii ...

  3. cf444E. DZY Loves Planting(并查集)

    题意 题目链接 Sol 神仙题啊Orzzzzzz 考场上的时候直接把树扔了对着式子想,想1h都没得到啥有用的结论. 然后cf正解居然是网络流??出给NOIP模拟赛T1???¥%--&((--% ...

  4. 【UER #1】[UOJ#12]猜数 [UOJ#13]跳蚤OS [UOJ#14]DZY Loves Graph

    [UOJ#12][UER #1]猜数 试题描述 这一天,小Y.小D.小C正在愉快地玩耍. 小Y是个数学家,他一拍脑袋冒出了一个神奇的完全平方数 n. 小D是个机灵鬼,很快从小Y嘴里套出了 n的值.然后 ...

  5. 学长小清新题表之UOJ 14.DZY Loves Graph

    学长小清新题表之UOJ 14.DZY Loves Graph 题目描述 \(DZY\)开始有 \(n\) 个点,现在他对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 ...

  6. UOJ14 UER #1 DZY Loves Graph(最小生成树+并查集)

    显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销 ...

  7. 2019.01.22 uoj#14. 【UER #1】DZY Loves Graph(并查集)

    传送门 题意简述: 要求支持以下操作: 在a与b之间连一条长度为i的边(i是操作编号):删除当前图中边权最大的k条边:表示撤销第 i−1次操作,保证第1次,第i−1 次不是撤回操作. 要求在每次操作后 ...

  8. [UER #1] DZY Loves Graph

    题目描述 开始有 \(n\) 个点,现在对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 \(1\) 开始编号)有可能的三种情况: \(Add\) a b: 表示在 \ ...

  9. Codeforces Round #286 (Div. 1) D. Mr. Kitayuta's Colorful Graph 并查集

    D. Mr. Kitayuta's Colorful Graph Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/ ...

随机推荐

  1. loadrunner 运行场景-常见Graph简介

    运行场景-常见Graph简介 by:授客 QQ:1033553122 A.   Web Resource Graphs 1.   概述 a)   Hits per Second Graph Hits ...

  2. eclipse显示代码行数

    最近做的手机APP正在进行最后一部分了,在一个类中估计要写上千行代码,来回的拉动滚动条太麻烦了,于是发现为什么我得eclipse不显示代码行数呢  其他C什么的编译器都显示的. 于是百度了一下,一下子 ...

  3. 浅谈Java多线程中的join方法

    先上代码 新建一个Thread,代码如下: package com.thread.test; public class MyThread extends Thread { private String ...

  4. call/apply以及this指向的理解

    javascript是面向对象的语言,Function也是一种对象,有自己的属性和方法.call和apply就是js函数自带方法,挂在Fucntion.prototype上. 一般调用某函数时,直接“ ...

  5. 前端路由简介以及vue-router实现原理

    后端路由简介 路由这个概念最先是后端出现的.在以前用模板引擎开发页面时,经常会看到这样 http://www.xxx.com/login 大致流程可以看成这样: 浏览器发出请求 服务器监听到80端口( ...

  6. 使用 Array2XML把数组转成XML格式,有相同的节点

    最近开发一个项目,需要调用第三方的接口,第三方提供的数据是xml,我直接使用Array2XML把php数组转成XML格式. XML格式如: <root> <body> < ...

  7. windows server 2008额外域控提升为主域控

    windows server 2008额外域控提升为主域控 ---图形界面操作方法 https://blog.csdn.net/tladagio/article/details/79618338 wi ...

  8. 使用虚拟环境virtualenv/Virtualenvwrapper隔离多个python

    virtualenv 系统中的多个python混用会导致$PYTHONPATH混乱,或者各个工程对于package的版本要求不同等等情况.有一个简单的解决方案就是用virtualenv来隔离多个pyt ...

  9. luogu P4515 [COCI2009-2010#6] XOR

    luogu P4515 [COCI2009-2010#6] XOR 描述 坐标系下有若干个等腰直角三角形,且每个等腰直角三角形的直角顶点都在左下方,两腰与坐标轴平行.被奇数个三角形覆盖的面 积部分为灰 ...

  10. linuxserver本地和百度云备份脚本小试

    本地单文件上传脚本.命名uf 这是在本机上做的測试,利用bpcs_uploader脚本实现,仅仅是进行简单的封装.自己主动完好云端文件路径. 技术要点:使用dirname获取文件所在文件夹.使用pwd ...