Luogu P2657 [SCOI2009]windy数
一道比较基础的数位DP,还是挺套路的。
首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式:
\(f[a,b]=f(b)-f(a-1)\)
然后考虑如何求解\(f(x)\)。我们首先可以在不考虑数的大小的情况下得出长为\(i\)位且以数字\(j\)开头的windy数字个数。
这个还是很好求的,我们设\(f_{i,j}\),然后每一位从上一位转移即可。
然后考虑如何统计,我们把要统计的数分成三类:
- 位数比原来的数小的,且开头不能为\(0\)的数的总数。这个直接累加即可。
- 位数和原来的数一样,但开头的数字比原来的数字小的数的总数。由于这样后面也可以随便取,因此累加即可。
- 位数和原来的数一样,且开头的数字也一样的数的总数。这个就比较难求了。我们考虑枚举后面的每一位,在不填到最高位的情况下都可以继续累加。然后我们假定这一位也到达了最高位,然后继续统计即可。
注意在统计第三种数时要注意若此时相邻的两个数的最高位只差小于\(2\)需要直接退出。
最后我们发现这个只能统计所以小于\(x\)的windy数。因此我们把原来的起手式变成\(f(b+1)-f(a)\)即可。
CODE
#include<cstdio>
#include<cstring>
using namespace std;
int a,b,bit[15],cnt;
long long f[15][10];
inline int abs(int x)
{
return x>0?x:-x;
}
inline void init(void)
{
register int i,j,k;
for (i=0;i<=9;++i)
f[1][i]=1;
for (i=2;i<=10;++i)
for (j=0;j<=9;++j)
for (k=0;k<=9;++k)
if (abs(j-k)>=2) f[i][j]+=f[i-1][k];
}
inline void solve(int x)
{
while (x) bit[++cnt]=x%10,x/=10;
}
inline long long get(int x)
{
register int i,j,k,w; long long ans=0;
cnt=0; solve(x);
for (i=1;i<cnt;++i)
for (j=1;j<=9;++j)
ans+=f[i][j];
for (i=1;i<bit[cnt];++i)
ans+=f[cnt][i];
for (i=cnt-1;i>=1;--i)
{
for (j=0;j<bit[i];++j)
if (abs(j-bit[i+1])>=2) ans+=f[i][j];
if (abs(bit[i]-bit[i+1])<2) break;
}
return ans;
}
int main()
{
scanf("%d%d",&a,&b); init();
printf("%lld",get(b+1)-get(a));
return 0;
}
Luogu P2657 [SCOI2009]windy数的更多相关文章
- luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索
题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...
- 题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP
BZOJ & luogu 看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$ (以上是今年3月写的话(叫我鸽神$qwq$)) 思路:数位$DP$ 提交:2次 题解:(见代码) #inclu ...
- P2657 [SCOI2009]windy数
P2657 [SCOI2009]windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B ...
- 洛谷 P2657 [SCOI2009]windy数 解题报告
P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...
- 洛谷——P2657 [SCOI2009]windy数
P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和 ...
- C++ 洛谷 P2657 [SCOI2009]windy数 题解
P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...
- 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]
题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...
- [洛谷P2657][SCOI2009]windy数
题目大意:不含前导零且相邻两个数字之差至少为$2$的正整数被称为$windy$数.问$[A, B]$内有多少个$windy$数? 题解:$f_{i, j}$表示数有$i$位,最高位为$j$(可能为$0 ...
- P2657 [SCOI2009]windy数 数位dp
数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...
随机推荐
- (后台)Java:对double值进行四舍五入,保留两位小数的几种方法
mport java.text.DecimalFormat; DecimalFormat df = new DecimalFormat("######0.00"); double ...
- MySQL写入用户微信名
很简单的需求,将用户微信名写入MySQl即可,但是测试过程中却遇到了问题,微信名中的emoji写入数据库失败.解决步骤如下 1.了解utf8mb4 MySQL从5.5.3版本开始支持utf8mb4编码 ...
- [20170627]使用TSPITR恢复表空间.txt
[20170627]使用TSPITR恢复表空间.txt --//RMAN提供了一种实现所谓TSPITR(Tablespace Point-In-Time Recovery)的技术,通过简单的一个语句, ...
- 【 PostgreSQL】查询某模式下所有表的分布键信息
想看下某模式下所有表创建的分布键是否合理,查找系统表文档拼出如下sql,亲们如果有更好的sql或者意见欢迎留言! SELECT aaa.nspname AS "模式名", ...
- mysqlreport工具
进行MySQL的配置优化,首先必须找出MySQL的性能瓶颈所在:而SHOW STATUS输出的报告正是用来计算性能瓶颈的参考数据.mysqlreport不像SHOW STATUS那样简单的罗列数据,而 ...
- ARP单播请求?
在我的理解中,ARP请求是已知对方的IP地址,想要请求对方的MAC地址,用以封装以太网帧头.因此在不知道对方MAC地址的情况下,会广播ARP请求到整个子网,让子网中的所有设备收到这个广播ARP请求报文 ...
- [MapReduce_7] MapReduce 中的排序
0. 说明 部分排序 && 全排序 && 采样 && 二次排序 1. 介绍 sort 是根据 Key 进行排序 [部分排序] 在每个分区中,分别进行排序 ...
- apache的php模块讲解以及搭建phpmyadmin管理数据库mysql
1.php php的包名字叫做php-common,其配置文件使用的是ini风格的格式. php的配置文件以分号作为注释,把分号去掉表示启动此片段功能. 在这里我们可以看到php在apache中的模块 ...
- Coprime (单色三角形+莫比乌斯反演(数论容斥))
这道题,先说一下单色三角形吧,推荐一篇noip的论文<国家集训队2003论文集许智磊> 链接:https://wenku.baidu.com/view/e87725c52cc58bd631 ...
- 【转】android笔记--保存和恢复activity的状态数据
一般来说, 调用onPause()和onStop()方法后的activity实例仍然存在于内存中, activity的所有信息和状态数据不会消失, 当activity重新回到前台之后, 所有的改变都会 ...