Coprime (单色三角形+莫比乌斯反演(数论容斥))
这道题,先说一下单色三角形吧,推荐一篇noip的论文《国家集训队2003论文集许智磊》
链接:https://wenku.baidu.com/view/e87725c52cc58bd63186bd1b.html?from=search
单色三角形指的是n个顶点,有n(n-1)条边,很明显是每个点两两相连,那么这样所形成的所有三角形的边假如有两种颜色:红和黑。那么问一共有多少三角形的三边是一种颜色的个数。
,建议看一下那个论文,因为我只能直接给出你结论。 下面的数学符号:{...}为概率论中表示事件的符号(集合),|{...}| 表示集合的元素个数。
如图,可知 |{ 单色三角形事件 } | =|{ 所有三角形 }| - |{ 非单色三角形 }| 很容易得 | { 所有三角形 } | = C3n=n(n-1)(n-2)/6; 那么就直接把| { 非单色三角形 } |求出来。
如图:非单色三角形有的情况和的情况, 但是无疑都存在两个顶点所连接的两个边都是异色。那么,我们就将这个图抽象成n个这样类似的图那么,如果知道顶点 i 的红色边 ai 的话, 那么 黑色边就是 n-1-ai, 那么,| { 包含 i 顶点的非单色三角形 } |=ai(n-1-ai); 那么,由加法原理得 | { 非单色三角形 } | = ∑ai(n-1-ai);
这样就可以计算出,所有单色三角形的个数了。
那么,我们先看看这个题的特性(ai, aj, ak){i<j<k} S={ 满足两两互质,或者两两不互质 }。是不是相当于边的颜色为红色和为黑色呢?那么,ai 就相当于顶点
假如,我们已经知道了ai 与那些所给的数据 不互质的个数 bi 。(我们先说不互质的情况。至于为什么,一会下面理解了莫比乌兹反演就知道了。)
那么,|S|=|{ 所有(ai,aj, ak)的任意组合 }| - |{ !S }| (!S表示S的反 )
还是,把重点放在| {!S} | 上,刚刚,我们是假设已知那些数据与ai不互质的个数bi, 但是怎么得到bi就涉及到另一个重大的问题。
莫比乌斯反演——容斥原理。
其实,这道题加深了我个人对莫比乌斯的理解吧。
都知道一般容斥原理的公式,|S1+S2+S3+S4+S5.....+Sk|=∑(-1)(n-1)∏(Sx...Sy) (不知道的自己百度)
这个公式,用文氏图非常明显,是任何时间(集合)的子集之间的相互关系的一种,当然也是定义讲的好。
那么,数论呢?其实,它也有像一般容斥的公式,它就是莫比乌斯反演。只不过,它的集合就是以所有数为元素的集合,处理的对象很多是(x, y)这样的数对。
回到题上:当转化为gcd(ai,aj)=k, 那么,我们可以在数据ai中找出最大值max,得到一个k的范围 [ 1, max], 先记录枚举当数据ai中质数因子为k的个数,记录为 mk。这样就得到了[ 1, max ]为质因子的数的个数{m}。
这时,把 gcd(x, y)!=1 这个拿出来,由x, y的唯一质数分解得,∑|{gcd(x, 1)=1}|-∑| {gcd(x,y)=k} | +∑|{gcd(x, y)=n*m}|-∑|{gcd(x, y)=nmh}|....=∑u(d)F(n/d); (感觉这里写的有些毛病。)
ac代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn = 1e5 + ;
int a[maxn];
int vis[maxn];
int mu[maxn];
int prime[maxn]; void mobius()
{
mu[] = ;
int cnt = ;
for (int i = ; i < maxn; ++i)
{
if (!vis[i]){ prime[cnt++] = i; mu[i] = -;}
for (int j = ; j < cnt&&prime[j] * i < maxn; ++j)
{
vis[prime[j] * i] = ;
if (i%prime[j] == ){ mu[prime[j] * i] = ; break; }
mu[prime[j] * i] = -mu[i];
}
}
}
int maxx;
ll n, hz[maxn], num[maxn]; void solve()
{
memset(hz, , sizeof(hz));
memset(num, , sizeof(num));
for (int i = ; i <= maxx; ++i)
{
for (int j = i; j <= maxx; j += i) //寻找i的倍数的个数
num[i] += vis[j];
for (int j = i; j <= maxx; j += i)
hz[j] += mu[i] * num[i];
}
ll ans = ;
for (int i = ; i < n; ++i)
{
if (a[i] != )
{
ans += 1LL*(hz[a[i]]*(n - - hz[a[i]]));
}
}
ans = n*(n - ) * 1LL * (n - ) / - ans / ;
printf("%lld\n", ans);
} int main()
{
int t;
scanf("%d", &t);
mobius();
while (t--)
{
memset(vis, , sizeof(vis));
memset(a, , sizeof(a));
scanf("%lld", &n);
maxx = ;
for (int i = ; i < n; ++i)
{
scanf("%lld", &a[i]);
++vis[a[i]];
maxx = max(maxx, a[i]);
}
solve();
}
}
Coprime (单色三角形+莫比乌斯反演(数论容斥))的更多相关文章
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- JZYZOJ1518 [haoi2011]b 莫比乌斯反演 分块 容斥
http://172.20.6.3/Problem_Show.asp?id=1518最开始只想到了n^2的写法,肯定要超时的,所以要对求gcd的过程进行优化.首先是前缀和容斥,很好理解.第二个优化大致 ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- 【LOJ#6374】网格(二项式反演,容斥)
[LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- POJ 1150 The Last Non-zero Digit 数论+容斥
POJ 1150 The Last Non-zero Digit 数论+容斥 题目地址: id=1150" rel="nofollow" style="colo ...
- HDU 5072 Coprime (单色三角形+容斥原理)
题目链接:Coprime pid=5072"> 题面: Coprime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块
问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...
随机推荐
- SSH原理和应用
SSH(Secure SHell)是为远程登录, 远程通信等设计的安全通信协议, 由芬兰研究员于1995年提出,其目的是用于替代非安全的Telnet.rsh.rexec等不安全的远程Shell协议. ...
- 【手记】解决“未能创建 SSL/TLS 安全通道”异常
之前写了一个桌面程序,程序会间歇性访问某个https接口,一直用的好好的,今天突然报错了,异常就发生在访问接口的地方,曰“请求被中止,未能创建 SSL/TLS 安全通道.”,另外有台电脑也有跑该程序, ...
- DOM之城市二级联动
1.HTML内容 <select id="province"> <option>请选择</option> <option>山东省&l ...
- HDU4825(01字典树)
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)Total S ...
- 洛谷P3722 [AH2017/HNOI2017]影魔(线段树)
题意 题目链接 Sol 题解好神仙啊qwq. 一般看到这种考虑最大值的贡献的题目不难想到单调数据结构 对于本题而言,我们可以预处理出每个位置左边第一个比他大的位置\(l_i\)以及右边第一个比他大的位 ...
- webpack单独打包一个less文件
需要将btn.less文件用webpack打包后,放到项目中.在网上百度了各种,遇到了很多问题,现在我将整个步骤整理如下: 1.建一个空的文件夹,命名为init_webpack,在该文件夹下运行: 这 ...
- 从零开始学习html(七)CSS样式基本知识
一.内联式css样式,直接写在现有的HTML标签中 <!DOCTYPE HTML> <html> <head> <meta http-equiv=" ...
- 从零开始学习html(六)开始学习CSS,为网页添加样式
一.认识CSS样式 <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type&quo ...
- Autoit3操作网页实现自动化
Autoit3 本身有内置的用户自定义函数IE.au3,只限于IE浏览器,如果是Firefox浏览器需要另外自定义函数. 找了很多资料发现有个FF.au3的自定义函数,下载地址 http://www. ...
- Google Chrome 下载&绿化&增强
Chrome下载 Google Chrome 已经可以在线更新,虽然比较慢! 国内常用的更新地址有两处:chromedownloads 和 shuax(耍下): https://www.chromed ...