1、标量、向量、矩阵和张量

1)标量(scalar),一个数,例如自然数和实数。

2)向量(vector),一列有序数。可以看作只有一列的矩阵。

3)矩阵(matrix),二维数组。转置(transpose),关于主对角线(从左上角到右下角)对称。

4)张量(tensor),高维数组。

2、矩阵和向量相乘

1)矩阵乘法,(m x n)(n x p) = (m x p)

2)向量点积

3、单位矩阵和矩阵逆

1)单位矩阵(identity matrix),任意向量和单位矩阵相乘都不会变。

2)矩阵逆(matrix inversion),

4、线性相关和生成子空间

5、范数(norm)

衡量向量大小的函数。

p=2,欧几里得范数(Euclidean norm)。

7、特征分解

特征分解(eigendecomposition),将矩阵分解成特征向量和特征值。

方阵A的特征向量(eigenvector),与A相乘等于对该向量进行缩放。

推导过程: 

8、奇异值分解

10、迹运算

1)迹运算(trace),矩阵主对角线元素的和

2)迹运算等于转置的迹运算

11、行列式

det(A),将方阵A映射到实数,等于矩阵特征值的乘积。

1)二阶行列式

2)几何意义

两个向量(行向量或者列向量)形成的平行四边形的面积。高阶行列式则表示平行多面体的体积。

3)线性变换

方阵可以表示线性变换。行列式是线性变换的伸缩因子。

正交矩阵

参考链接:

http://baijiahao.baidu.com/s?id=1598899137339626314&wfr=spider&for=pc

https://baike.baidu.com/item/%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B0%E5%85%AC%E5%BC%8F/4374733

https://jingyan.baidu.com/article/acf728fd78dc4ef8e510a3f4.html

AI 线性代数的更多相关文章

  1. 图解AI数学基础 | 线性代数与矩阵论

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-det ...

  2. 普通程序员如何转向AI方向

    眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 本文的目的是给出一个简单的,平 ...

  3. AI方向

    普通程序员如何转向AI方向   眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 ...

  4. 斯坦福大学CS224d基础1:线性代数回顾

    转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...

  5. 普通程序员如何转向AI方向(转)

    普通程序员如何转向AI方向   眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 ...

  6. AI 学习路线

    [导读] 本文由知名开源平台,AI技术平台以及领域专家:Datawhale,ApacheCN,AI有道和黄海广博士联合整理贡献,内容涵盖AI入门基础知识.数据分析挖掘.机器学习.深度学习.强化学习.前 ...

  7. 目前大热的AI和SLAM的职业发展的想法

    目前,AI的研究和SLAM的发展已经走到使用领域.还记得三年前,上<信息光学>的老师在课上提到,他有一个研究生买了一个两万块的笔记本,还要出国去研究人工智能,当时听着认为这位学长很疯狂.可 ...

  8. AI之旅(2):初识线性回归

    前置知识   矩阵.求导 知识地图   学习一个新事物之前,先问两个问题,我在哪里?我要去哪里?这两个问题可以避免我们迷失在知识的海洋里,所以在开始之前先看看地图.   此前我们已经为了解线性回归做了 ...

  9. AI之旅(1):出发前的热身运动

    前置知识   无 知识地图 自学就像在海中游泳   当初为什么会想要了解机器学习呢,应该只是纯粹的好奇心吧.AI似乎无处不在,又无迹可循.为什么一个程序能在围棋的领域战胜人类,程序真的有那么聪明吗?如 ...

随机推荐

  1. hadoop之 hadoop能为企业做什么?

    hadoop是什么? Hadoop是一个开源的框架,可编写和运行分不是应用处理大规模数据,是专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式.Hadoop=HDFS( ...

  2. PHP FastCGI进程管理器PHP-FPM的架构

    一个master进程,支持多个pool,每个pool由master进程监听不同的端口,pool中有多个worker进程.每个worker进程都内置PHP解释器,并且进程常驻后台,支持prefork动态 ...

  3. linux下怎么进入本机mysql

    sudo /etc/init.d/mysql startmysql -u xxxx -p*****mysql >_

  4. lnmp首次安装重置mysql密码

    第一种方法:一键修改LNMP环境下MYSQL数据库密码脚本 一键脚本肯定是非常方便.具体执行以下命令: wget http://soft.vpser.net/lnmp/ext/reset_mysql_ ...

  5. Python:dictionary

    # Python3.4 Eclipse+PyDev 打开Eclipse,找到Help菜单栏,进入Install New Software…选项. # 点击work with:输入框的旁边点击Add…, ...

  6. C#中禁止跨线程直接访问控件

    C#中禁止跨线程直接访问控件,InvokeRequired是为了解决这个问题而产生的,当一个控件的InvokeRequired属性值为真时,说明有一个创建它以外的线程想访问它.此时它将会在内部调用ne ...

  7. persist与checkpoint

    1.当反复使用某些RDD时建议使用persist(缓存级别)(采用默认缓存级别时为cache())来对数据进行缓存. 2.如果某个步骤的RDD计算特别耗时或经历很多步骤的计算,当重新计算时代价特别大, ...

  8. maven(二):创建一个可用的maven项目,完整过程

    环境:eclipse4.5 (内置maven插件) 创建maven项目 文件菜单--新建--其他-- maven project 下一步 选择web 结构 group id:  指项目在maven本地 ...

  9. PHP类多继承的替代方案Traits

    概述 traits是PHP5.4新进入的特性,其目的就是解决PHP的类不能多继承的问题.Traits不是类!不能被实例化.可以理解为一组能被不同的类都能调用到的方法集合.只需要在类中使用关键词use引 ...

  10. SQL Server 中的回滚

    USE [TestDB] GO /****** 对象: Table [dbo].[Person] 脚本日期: 11/23/2008 13:37:48 ******/ SET ANSI_NULLS ON ...