极大似然估计学习时总会觉得有点不可思议,为什么可以这么做,什么情况才可以用极大似然估计。本文旨在通俗理解MLE(Maximum Likelihood Estimate)。

一、极大似然估计的思想与举例

举个简单的栗子:在一个盒子里有白色黑色小球若干个,每次有放回地从里面哪一个球,已知抽到白球的概率可能为0.7或者0.3,但不清楚,现在抽取三次,三次都没有抽到白球,请问盒子中一次抽到白球的概率是多少?

这类栗子有一个共性,我们假设白球的概率为p,然后用它去计算已知发生的事情“三次都是黑球”使其发生的概率最大。已知p可能取值为0.7或者0.3,那我们两个值分别计算三次抽取为黑球的概率,谁的概率大我们就认为p的概率是多少。

p=0.3时,三次为黑球的概率 P = 0.7*0.7*0.7 = 0.342

p=0.7时,三次为黑球的概率 P = 0.3*0.3*0.3 = 0.027

可见p为0.3时事件三次抽取都为黑球发生的概率最大,所以我们认为盒子中取到白球的概率的极大似然估计为0.3。

再举个栗子:有两个男孩和一个女孩,已知两男孩中其中一个与女孩是兄妹,经过观察发现男孩A与女孩有点像,男孩B与女孩不像,那我们就会猜测男孩A和女孩是兄妹。

这就是用到了极大似然估计的思想,即忽略低概率,认为高概率的为真实事件,或者去估计真实事件。

对于连续的问题,还是上面的小球例子,如果取到白球的概率为一个区间值[0.3, 0.7]。

求解:假设取到取到白球概率为p,则三次都为黑球的事件概率

P = (1-p)^3

P对p求导得:P' = -3(1-p)^2

令P' = 0,得p = 1,  因为 p 在[0.3, 0.7]之间,p<1时,P' < 0, 故在 p < 1区间内,函数P单调递减,所以p = 0.3时,P取到最大值。即事件发生的可能性最大,所以白球概率的极大似然估计为0.3。

二、总结

通过以上的分析,可以得出极大似然估计的通常解法,总体来说分为以下几步:
1、得到所要求的极大似然估计的概率p的范围
2、以p为自变量,推导出当前已知事件的概率函数式Q(p)
3、求出能使得Q(p)最大的p
这样便求出了极大似然估计值p

理解极大似然估计(MLE)的更多相关文章

  1. 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

    目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...

  2. 浅议极大似然估计(MLE)背后的思想原理

    1. 概率思想与归纳思想 0x1:归纳推理思想 所谓归纳推理思想,即是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理.抽象地来说,由个别事实概括出一般结论的推理称为归纳推 ...

  3. 机器学习(二十五)— 极大似然估计(MLE)、贝叶斯估计、最大后验概率估计(MAP)区别

    最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参 ...

  4. 从极大似然估计的角度理解深度学习中loss函数

    从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于 ...

  5. MLE极大似然估计和EM最大期望算法

    机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...

  6. 数理统计7:矩法估计(MM)、极大似然估计(MLE),定时截尾实验

    在上一篇文章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要一定的参数估计方法.今天我们将讨论常用的点估计方法:矩估计.极大似然估计,它们各有优劣,但都很重要.由于本 ...

  7. 极大似然估计(MLE)

    基本思想 模型已定,参数未知 根据已存在的样本,挑选(求出)能让样本以最大概率发生的参数 极大似然估计和最小二乘法最大区别之一 极大似然需要知道概率密度函数(离散型叫分布律) 若总体X属离散型,其分布 ...

  8. (转载)极大似然估计&最大后验概率估计

    前言 不知看过多少次极大似然估计与最大后验概率估计的区别,但还是傻傻分不清楚.或是当时道行太浅,或是当时积累不够. 这次重游机器学习之路,看到李航老师<统计学习方法>中第一章关于经验风险最 ...

  9. [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

    [白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...

随机推荐

  1. zabbix自定义监控

    有的时候zabbix提供的监控项目,不能满足我们生产环境下的监控需求,此时我们就要按照zabbix的规范自定义监控项目,达到监控的目的 zabbix_get:模拟zabbix_server和agent ...

  2. Golang中的三个点

    之前提到了把一个切片追加到另外一个切片时使用到了... 今天我们好好研究一下这三个点,博客写着写着又成了,回字有四种写法 ...第一种用法,可变长的参数 package main import &qu ...

  3. 微服务架构day01

    1.微服务架构的基本概念 分布式:将一个项目模块化 区分为多个子项目(自己理解:将业务逻辑层和数据库访问层独立化   通过rpc远程调用(rpc框架  springCould  httpCliend ...

  4. Python12/25--前端之BOM/DOM

    一.DOM 1. 什么是DOM 文档对象模型 Document Object Model 文档对象模型 是表示和操作 HTML和XML文档内容的基础API 文档对象模型,是W3C组织推荐的处理可扩展标 ...

  5. php 将对象转化为数组

    $list = json_decode(json_encode($list), true);  

  6. verilog 有符号数(2转)

    在数字电路中,出于应用的需要,我们可以使用无符号数,即包括0及整数的集合:也可以使用有符号数,即包括0和正负数的集合.在更加复杂的系统中,也许这两种类型的数,我们都会用到. 有符号数通常以2的补码形式 ...

  7. 三.mysql表的完整性约束

    mysql表的完整性约束 什么是约束 not null    不能为空的 unique      唯一 = 不能重复 primary key 主键 = 不能为空 且 不能重复 foreign key ...

  8. Winform嵌入CEF(非正常用法)

    (一)复制下面必备文件|-- locales|--en-US.pak|--cef.pak|--cef_100_percent.pak |--cef_200_percent.pak|--cef_exte ...

  9. C++ lamba使用

    Moderm Effective C++ 条款31 第206提到了按引用捕获局部变量和函数形参时,如果lambda式的生命期依赖于局部变量和函数形参的生命期,需注意空悬引用的问题. 原书的例子不够直观 ...

  10. mysql大全

    1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- 创建 备份 ...