极大似然估计学习时总会觉得有点不可思议,为什么可以这么做,什么情况才可以用极大似然估计。本文旨在通俗理解MLE(Maximum Likelihood Estimate)。

一、极大似然估计的思想与举例

举个简单的栗子:在一个盒子里有白色黑色小球若干个,每次有放回地从里面哪一个球,已知抽到白球的概率可能为0.7或者0.3,但不清楚,现在抽取三次,三次都没有抽到白球,请问盒子中一次抽到白球的概率是多少?

这类栗子有一个共性,我们假设白球的概率为p,然后用它去计算已知发生的事情“三次都是黑球”使其发生的概率最大。已知p可能取值为0.7或者0.3,那我们两个值分别计算三次抽取为黑球的概率,谁的概率大我们就认为p的概率是多少。

p=0.3时,三次为黑球的概率 P = 0.7*0.7*0.7 = 0.342

p=0.7时,三次为黑球的概率 P = 0.3*0.3*0.3 = 0.027

可见p为0.3时事件三次抽取都为黑球发生的概率最大,所以我们认为盒子中取到白球的概率的极大似然估计为0.3。

再举个栗子:有两个男孩和一个女孩,已知两男孩中其中一个与女孩是兄妹,经过观察发现男孩A与女孩有点像,男孩B与女孩不像,那我们就会猜测男孩A和女孩是兄妹。

这就是用到了极大似然估计的思想,即忽略低概率,认为高概率的为真实事件,或者去估计真实事件。

对于连续的问题,还是上面的小球例子,如果取到白球的概率为一个区间值[0.3, 0.7]。

求解:假设取到取到白球概率为p,则三次都为黑球的事件概率

P = (1-p)^3

P对p求导得:P' = -3(1-p)^2

令P' = 0,得p = 1,  因为 p 在[0.3, 0.7]之间,p<1时,P' < 0, 故在 p < 1区间内,函数P单调递减,所以p = 0.3时,P取到最大值。即事件发生的可能性最大,所以白球概率的极大似然估计为0.3。

二、总结

通过以上的分析,可以得出极大似然估计的通常解法,总体来说分为以下几步:
1、得到所要求的极大似然估计的概率p的范围
2、以p为自变量,推导出当前已知事件的概率函数式Q(p)
3、求出能使得Q(p)最大的p
这样便求出了极大似然估计值p

理解极大似然估计(MLE)的更多相关文章

  1. 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

    目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...

  2. 浅议极大似然估计(MLE)背后的思想原理

    1. 概率思想与归纳思想 0x1:归纳推理思想 所谓归纳推理思想,即是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理.抽象地来说,由个别事实概括出一般结论的推理称为归纳推 ...

  3. 机器学习(二十五)— 极大似然估计(MLE)、贝叶斯估计、最大后验概率估计(MAP)区别

    最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参 ...

  4. 从极大似然估计的角度理解深度学习中loss函数

    从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于 ...

  5. MLE极大似然估计和EM最大期望算法

    机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...

  6. 数理统计7:矩法估计(MM)、极大似然估计(MLE),定时截尾实验

    在上一篇文章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要一定的参数估计方法.今天我们将讨论常用的点估计方法:矩估计.极大似然估计,它们各有优劣,但都很重要.由于本 ...

  7. 极大似然估计(MLE)

    基本思想 模型已定,参数未知 根据已存在的样本,挑选(求出)能让样本以最大概率发生的参数 极大似然估计和最小二乘法最大区别之一 极大似然需要知道概率密度函数(离散型叫分布律) 若总体X属离散型,其分布 ...

  8. (转载)极大似然估计&最大后验概率估计

    前言 不知看过多少次极大似然估计与最大后验概率估计的区别,但还是傻傻分不清楚.或是当时道行太浅,或是当时积累不够. 这次重游机器学习之路,看到李航老师<统计学习方法>中第一章关于经验风险最 ...

  9. [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

    [白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...

随机推荐

  1. python02 运算符,基本数据类型,整型,字符串

    1.python开发IDE pycharm,python编写工具,, #专业版 #不需要汉化 注册码问题解决 https://www.cnblogs.com/evlon/p/4934705.html整 ...

  2. 【APP测试(Android)】--升级更新

  3. C# 多线程编程,传参,接受返回值

    C# 多线程编程,传参,接受返回值 今天将多线程的知识有回顾了下,总结了几点: 新建一个线程(无参数,无返回值) Thread th = new Thread(new ThreadStart(Prin ...

  4. web版ssh的使用

    一.web_ssh版本安装使用 web_ssh源码:https://github.com/shellinabox/shellinabox 1)安装依赖包 yum install git openssl ...

  5. 使用注解配置Spring

    使用注解配置Spring 1.为主配置文件引入新的命名空间(约束) 2.开启使用注解代理配置文件 3.在类中使用注解完成配置 将对象注册到容器 修改对象的作用范围 值类型注入 引用类型注入 注意: 初 ...

  6. s11.9 sar:收集系统信息

    功能说明: 通过sar命令,可以全面地获取系统的CPU.运行队列.磁盘I/O.分页(交换区).内存.CPU中断和网络等性能数据. 语法格式 sar  option interval count sar ...

  7. hdu 4027 Can you answer these queries?[线段树]

    题目 题意: 输入一个 :n  .(1<=n<<100000) 输入n个数    (num<2^63) 输入一个m :代表m个操作    (1<=m<<100 ...

  8. 端口转发工具lcx使用两类

    lcx是一款强大的内网端口转发工具,用于将内网主机开放的内部端口映射到外网主机(有公网IP)任意端口.它是一款命令行工具,当然也可以在有权限的webshell下执行,正因如此lcx常被认为是一款黑客入 ...

  9. google guava Multimap的学习介绍

    1.https://blog.csdn.net/gongxinju/article/details/53634434

  10. 关于UIScrollView不能响应UITouch事件的解决办法

    原因是:UIView的touch事件被UIScrollView捕获了. 解决办法:让UIScrollView将事件传递过去.于是最简单的解决办法就是加一个UIScrollView的category.这 ...