SVM – 回归
SVM的算法是很versatile的,在回归领域SVM同样十分出色的。而且和SVC类似,SVR的原理也是基于支持向量(来绘制辅助线),只不过在分类领域,支持向量是最靠近超平面的点,在回归领域,支持向量是那些距离拟合曲线(回归的目标函数/模型是拟合曲线)。
上图我们看到还有一个变量,是ϵ,ϵ决定了街道的宽度,它是拟合曲线和支持向量的距离。在svr的实现原理上,定义的损失函数是:
|yi−w∙ϕ(xi)−b|≤ϵ,则损失为0,因为落在了街道里面;
|yi−w∙ϕ(xi)−b|>ϵ,则损失函数值为|yi−w∙ϕ(xi)−b| - ϵ(即outlier到支持线的距离)
所以从损失函数的定义来看,其实还hinge loss要么是0,要么是距离值,只不过class的距离是到y值为1的点,而regression则是到y值为ϵ的点。
svr也是支持松弛变量,其原理和svm是一样的,只不过svc的符合松弛变量的点是在街道里面,到了svr,松弛变量对应的点是在街道的外面,通过松弛变量的指定来增加泛华。
SVM – 回归的更多相关文章
- SVM-支持向量机(三)SVM回归与原理
SVM回归 我们之前提到过,SVM算法功能非常强大:不仅支持线性与非线性的分类,也支持线性与非线性回归.它的主要思想是逆转目标:在分类问题中,是要在两个类别中拟合最大可能的街道(间隔),同时限制间隔侵 ...
- svm使用的一般步骤
LIBSVM 使用的一般步骤是:1)准备数据集,转化为 LIBSVM支持的数据格式 :[label] [index1]:[value1] [index2]:[value2] ...即 [l类别标号] ...
- SVM流行库LIBSvm的使用和调参
简介:Libsvm is a simple, easy-to-use, and efficient software for SVM classification and regression. It ...
- 【机器学习】支持向量机(SVM)
感谢中国人民大学胡鹤老师,课程深入浅出,非常好 关于SVM 可以做线性分类.非线性分类.线性回归等,相比逻辑回归.线性回归.决策树等模型(非神经网络)功效最好 传统线性分类:选出两堆数据的质心,并做中 ...
- SVM的简单介绍
ng的MI-003中12 ——SVM 一.svm目标函数的由来 视频先将LR的损失函数: 在上图中,先将y等于0 和y等于1的情况集合到一起成为一个损失函数,然后分别讨论当y等于1的时候损失函数的结果 ...
- 吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用
import pandas as pd # 导入第三方模块from sklearn import svmfrom sklearn import model_selectionfrom sklearn ...
- SVM训练结果参数说明 训练参数说明 归一化加快速度和提升准确率 归一化还原
原文:http://blog.sina.com.cn/s/blog_57a1cae80101bit5.html 举例说明 svmtrain -s 0 -?c 1000 -t 1 -g 1 -r 1 - ...
- (一)使用sklearn做各种回归
#申明,本文章参考于 https://blog.csdn.net/yeoman92/article/details/75051848 import numpy as np import matplot ...
- SVM用于线性回归
SVM用于线性回归 方法分析 在样本数据集()中,不是简单的离散值,而是连续值.如在线性回归中,预测房价.与线性回归类型,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面,采用作为 ...
随机推荐
- List的复制 (浅拷贝与深拷贝)
开门见山的说,List的复制其实是很常见的,List其本质就是数组,而其存储的形式是地址 如图所示,将List A列表复制时,其实相当于A的内容复制给了B,java中相同内容的数组指向同一地址,即进行 ...
- Opencv python图像处理-图像相似度计算
一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你 ...
- java内部类的本质
连接与通信,作为桥接中间件存在. 内部类和主体类可以无障碍通信: 1.通过继承连接实现: 2.通过接口连接通信: 形式: 1.命名空间: 2.运行上下文: 其它: 信息隐藏是次要功能. 内部类 Jav ...
- my OD
1 复习c文件处理内容 2 编写myod.c 用myod XXX实现Linux下od -tx -tc XXX的功能 main与其他分开,制作静态库和动态库 编写Makefile 5 提交测试代码和运行 ...
- 关于api创建监控项,添加灵活调度的事件间隔
在api文档中没有明确说明,可以查询数据库,得到的是一个字符串,
- .Net 下基于Redlock redis 分布式锁实现
Redlock-cs (C#/.NET implementation). RedLock.net (C#/.NET implementation). Includes async and lock e ...
- memset使用技巧
memset可以对高位数组进行初始化,非常方便.需要注意的是memset的头文件是string.h和memory.h . 下面来谈memset的4个使用技巧: (注:一下dp高维数组都是全局变量,局部 ...
- 洛谷 P3371【模板】单源最短路径(弱化版)
题面 既然是模板, 那就直接贴代码? 两种思路 1.迪杰斯特拉 #include <cstdio> #include <cstring> #include <iostre ...
- KVM系统镜像制作
使用virt-install创建虚拟机并安装GuestOS virt-install是一个命令行工具,它能够为KVM.Xen或其它支持libvirt API的hypervisor创建虚拟机并完成Gue ...
- Java动态调用脚本语言Groovy
Java动态调用脚本语言Groovy 2019-05-15 目录 0. pom.xml添加依赖1. 使用GroovyShell计算表达式2. 使用GroovyScriptEngine脚本引擎加载Gro ...