最小二乘线性回归,感知机,逻辑回归的比较:

 

最小二乘线性回归

Least Squares Linear Regression

感知机

Perceptron

二分类逻辑回归

Binary Logistic Regression

多分类逻辑回归

Multinomial Logistic Regression

特征x

x=([x1,x2,...,xn,1])T

权重w

w=([w1,w2,...,wn,b])T

目标y

实数(负无穷大到正无穷大)

两个类别

1,-1

两个类别

0,1

多个类别

c=0,1,...,k-1

目标函数

 

(类别1的概率)

for c=0,1,...,k-1

(全部类别的概率)

对y的估计

   

(类别1的概率)

for c=0,1,...,k-1

(全部类别的概率)

映射函数

sign函数

sigmoid函数

softmax函数

算法的作用

预测连续值(回归)

预测离散值(分类)

预测离散值(分类)

预测离散值(分类)

损失函数

 

损失函数的含义

观测值与估计值之间的欧式距离平方和

错误分类点距离分类超平面的总长度

估计的概率分布与真实的概率分布之间的相似程度,对于样本(xi,yi),它的正确分类类别是c,那么如果它计算出的目标属于类别c的分类概率的值为1,则说明分类完全正确,这种情况下对损失函数没有贡献(ln1=0);而如果分类错误,则它计算出的目标属于类别c的的分类概率将是一个小于1的值,这种情况下将对损失函数有所贡献

估计的概率分布与真实的概率分布之间的相似程度,对于样本(xi,yi),它的正确分类类别是c,那么如果它计算出的目标属于类别c的分类概率的值为1,则说明分类完全正确,这种情况下对损失函数没有贡献(ln1=0);而如果分类错误,则它计算出的目标属于类别c的的分类概率将是一个小于1的值,这种情况下将对损失函数有所贡献

损失函数的本质

目标y的条件概率P(y|x)在高斯分布下的极大似然估计(取负数和对数)

/

目标y的条件概率P(y|x)在伯努利分布下的极大似然估计(取负数和自然对数)

目标y的条件概率P(y|x)在多项分布下的极大似然估计(取负数和自然对数)

最优解方法

解析解(closed form),梯度下降法,牛顿法,拟牛顿法

随机梯度下降法,牛顿法,拟牛顿法

梯度下降法,牛顿法,拟牛顿法

梯度下降法,牛顿法,拟牛顿法

机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)的更多相关文章

  1. Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

    原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  2. FIFO、LRU、OPT这三种置换算法的缺页次数

    考虑下述页面走向: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 当内存块数量分别为3时,试问FIFO.LRU.OPT这三种置换算法的缺页次数各是多少? 答:缺页定义 ...

  3. 排序—时间复杂度为O(n2)的三种排序算法

    1 如何评价.分析一个排序算法? 很多语言.数据库都已经封装了关于排序算法的实现代码.所以我们学习排序算法目的更多的不是为了去实现这些代码,而是灵活的应用这些算法和解决更为复杂的问题,所以更重要的是学 ...

  4. 基于C#程序设计语言的三种组合算法

    目录 基于C#程序设计语言的三种组合算法 1. 总体思路 1.1 前言 1.2 算法思路 1.3 算法需要注意的点 2. 三种组合算法 2.1 普通组合算法 2.2 与自身进行组合的组合算法 2.3 ...

  5. 网络中,FIFO、LRU、OPT这三种置换算法的缺页次数

    FIFO.LRU.OPT这三种置换算法的缺页次数 转载  由于要考计算机四级网络,这里遇到了问题,就搜了一些资料来解疑. 考虑下述页面走向: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3 ...

  6. 三种Hash算法对比以及秒传原理.

    三种Hash算法对比以及秒传原理 CRC (32/64)   MD5  Sha1 分5个点来说 1.校验值长度 2.校验值类别 3.安全级别 4.应用场景 1).校验值长度 CRC(32/64) 分别 ...

  7. 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)

    在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...

  8. 创建B树,动态添加节点,并使用三种遍历算法对树进行遍历

    ks17:algorithm apple$ cat btree_test.c ///********************************************************** ...

  9. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

随机推荐

  1. vs配置opencv(只需一次)

    一.配置环境变量(bin) 二.配置属性表 1.配置包含(include)目录 2.配置库(lib)目录 3.配置依赖项(.lib)

  2. Java之路---Day01

    2019-10-17-19:36:43 标识符: 标识符:是指在程序中,自己定义的内容.如:类名.方法名.变量名等 命名规则(硬性要求): 1.有英文字母(区分大小写).数字.$(美元符)._(下划线 ...

  3. Java自学-数组 Arrays

    java.util.Arrays类常用方法 Arrays是针对数组的工具类,可以进行 排序,查找,复制填充等功能. 大大提高了开发人员的工作效率. 步骤 1 : 数组复制 与使用System.arra ...

  4. iOS 13-Sign In with Apple

    最近了解了iOS 13新增功能之Sign In with Apple,Sign In with Apple是跨平台的,可以支持iOS.macOS.watchOS.tvOS.JS.本文主要内容为Sign ...

  5. jquery获取form表单中的数据

    $(function() { $('#submit').click(function() { var d = {}; var t = $('form').serializeArray(); //t的值 ...

  6. JavaScript原型链以及Object,Function之间的关系

    JavaScript里任何东西都是对象,任何一个对象内部都有另一个对象叫__proto__,即原型,它可以包含任何东西让对象继承.当然__proto__本身也是一个对象,它自己也有自己的__proto ...

  7. weblogic unable to get file lock问题

    非正常结束weblogic进程导致weblogic无法启动 由于先前服务器直接down掉了,所有进程都非正常的进行关闭了,也就导致了下次启动weblogic的时候报了以下错误: <2012-3- ...

  8. python3中try异常调试 raise 异常抛出

    一.什么是异常? 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行. 一般情况下,在Python无法正常处理程序时就会发生一个异常. 异常是Python对象,表示一个错误. 当Py ...

  9. Oracle UNDO块

    过程:开始一个事务--通过事务信息找到UNDO块头的所在的段名及数据文件号等--转储UNDO header--在事务表中对应槽位找到前镜像dba--转储数据块--找到对应记录得到bdba--转储数据块 ...

  10. vue中引入mui报Uncaught TypeError: 'caller', 'callee', and 'arguments' properties may not be accessed on strict mode functions or the arguments objects for calls to them的错误

    在vue中引入mui的js文件的时候,报如下的错误: 那是因为我们在用webpack打包项目时默认的是严格模式,我们把严格模式去掉就ok了 第一步:npm install babel-plugin-t ...