JDOJ 2157 Increasing
洛谷 P3902 递增
JDOJ 2157: Increasing
Description
数列A1,A2,……,AN,修改最少的数字,使得数列严格单调递增。
Input
第1 行,1 个整数N
第2 行,N 个整数A1,A2,……,AN
Output
1 个整数,表示最少修改的数字
Sample Input
3 1 3 2
Sample Output
1
HINT
• 对于50% 的数据,N <= 103
• 对于100% 的数据,1 <= N <= 105, 1 <= Ai <= 109
最优解声明
8ms卡的我好苦
题解:
这是一道单调队列的题。
首先我们想到这样的一个定理:
我们先维护一个单调队列,这个队列的元素是严格单调递增的,那么,现在我们要增加一个元素的时候,先与队尾元素比较,如果比队尾元素大,OK,入队。否则的话,就把这个元素插入到它应该到的位置,使这个东西还是一个单调队列。这时就进行了修改操作,我们就需要把答案++。
于是我们敏锐的察觉到,把这个元素插入到它应该到的地方是这道题的难点。
然后我们又敏锐地察觉到,可以用二分解决。
于是有了代码1:
#include<cstdio>
#include<algorithm>
using namespace std;
int n,a[100010],d[100010];
int l,r,ans;
int find(int x)
{
int mid,left=l,right=r;
while(left<right)
{
mid=(left+right)>>1;
if(x==d[mid])
return mid;
if(x>d[mid])
left=mid+1;
else
right=mid;
}
return right;
}
int main()
{
l=1;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
{
if(a[i]>d[r])
d[++r]=a[i];
else
d[find(a[i])]=a[i];
}
printf("%d",n-r);
return 0;
}
但是这个方法很麻烦。麻烦就在于必须全部读入之后再处理,需要跑两边循环,无数遍二分。所以我们想到了在讲二分地时候学习的lower_bound和upper_bound函数,它们是我们实现二分的有利帮手。
代码2:
#include<cstdio>
#include<algorithm>
using namespace std;
int n,q[100001],now,ans;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int num;
scanf("%d",&num);
if(num>q[now])
q[++now]=num;
else
{
*lower_bound(q+1,q+now+1,num)=num;
ans++;
}
}
printf("%d",ans);
return 0;
}
JDOJ 2157 Increasing的更多相关文章
- [LeetCode] Increasing Triplet Subsequence 递增的三元子序列
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- git error: unable to rewind rpc post data - try increasing http.postBuffer
error: unable to rewind rpc post data - try increasing http.postBuffererror: RPC failed; curl 56 Rec ...
- 【LeetCode】Increasing Triplet Subsequence(334)
1. Description Given an unsorted array return whether an increasing subsequence of length 3 exists o ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- LintCode-Longest Increasing Subsequence
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- Longest Increasing Path in a Matrix -- LeetCode 329
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
随机推荐
- Salesforce 开发整理(九) 开发中使用的一些小技巧汇总[持续更新]
1.查询一个对象下所有字段 当需要查询一个对象所有字段进行复制或其他操作,可以使用一段拼接的语句来查询 String query = 'select '; for(String fieldApi : ...
- mtd-utils编译安装过程
git clone git://git.infradead.org/mtd-utils.git cd mtd-utils apt install -y libssl-dev libzlb libzst ...
- W5500电路图
W5500是韩国一款集成全硬件 TCP/IP 协议栈的嵌入式以太网控制器,W5500同时也是一颗工业级以太网控制芯片,最近发现我们国内也有和W5500 芯片一样芯片 介绍给大家 如下图:
- oracle数据库安装过程中的疑惑—该记录是本人以前写在微博上的文章
转行IT初学者关于oracle数据库整理第一次安装数据库的时候都是按照操作步骤一步一步进行安装,并没有对操作步骤产生过怀疑或者为什么要这么进行操作?2017年12月8日再次阅读安装操作说明书的时候有了 ...
- Apache Commons 简介
Apache Commons 由多个独立发布的软件包组成,此页面提供了当前可用的 Commons 组件的概述. Components BCEL 字节码工程库 - 分析,创建和操作 Java 类文件. ...
- 在ubuntu下安装openjdk
OpenJDK是JDK的开放源码版本,以GPL(General Public License,通用性公开许可证)协议的形式放出.因为授权协议的原因,Sun公司实现的JDK的一部分源码因为产权的问题无法 ...
- Dapper学习(四)之Dapper Plus的大数据量的操作
这篇文章主要讲 Dapper Plus,它使用用来操作大数量的一些操作的.比如插入1000条,或者10000条的数据时,再使用Dapper的Execute方法,就会比较慢了.这时候,可以使用Dappe ...
- SQL Server merge用法
有两个表名:source 表和 target 表,并且要根据 source 表中匹配的值更新 target 表. 有三种情况: source 表有一些 target 表不存在的行.在这种情况下,需要将 ...
- tempermonkey文档及为google翻译添加清除输入框脚本
想通过tempermonkey为google增加一个清除输入框的快捷键,这本来是很好做的事情,后来也证明确实是那么简单,不过中间遇到了几个奇怪的问题,有必要记录一下 tempermonkey 文档:h ...
- 1-Kong文章记录
参考: https://www.cnblogs.com/duanxz/p/9770645.html 系列博客可参考: 开源API网关系统(Kong教程)入门到精通 https://www.cnblog ...