http://codeforces.com/problemset/problem/1081/C

题意:有n个排成一行板块,有m种颜色,要让这些板块有k对相邻板块不同颜色,有多少种涂色方法?

比如样例2,3块板,2种颜色,1对不同。有4种涂法。

1.黄+绿+绿

2.黄+黄+绿

3.绿+黄+黄

4.绿+绿+黄

为什么是相邻不同?百度翻译讲得含糊其辞。从样例可以推断出来如果第1种情况中,第一个黄 越过第二个绿 直接与第三个绿构成一种情况,则样例不成立。

解题:

dp[i][j]表示长度为i的板块中有j个不同色的情况。

对于第1个板块,肯定是没有不同色的,1个哪来的不同?第1个板块的涂色方法有m种,这应该可以理解,每种颜色都可以涂在第1块上,暂时不考虑其他的东西。

举例:有4块板,3种颜色(用字母a,b,c表示),要2种不同色。

对于第1个板块,有3种情况

a * * *

b * * *

c * * *

本例子要求2个相邻不同色

则对于第2个板块,要创造出1个相邻不同色,则第二个板块要和前面的板块不同色,前面的板块占m种中的1种,则与它不同色的情况有m-1种。dp[i][j] = dp[i-1][j-1] *(m-1)。比如现在的dp[2][1]=dp[1][0]*2=3*2=6;

a b * *    a c * *

b a * *    b c * *

c a * *    c b * *

对于第3个板块,如果要再创造出1个相邻不同色,则dp[3][2]=dp[2][1]*2=6*2=12;

aba*    abc*              aca*     acb*

bab*    bac*              bca*     bcb*

cac*    cab*              cba*     cbc*

对于第4个板块,2个相邻不同色已经够了,则不需要再创造相邻不同色了,按照上一种涂色方法继续涂就好。dp[i][j]=dp[i-1][j];

abaa    abcc              acaa     acbb

babb    bacc              bcaa     bcbb

cacc    cabb              cbaa     cbcc

但是,如果第2块涂的时候不创造相邻不同色,则是这样,dp[i][j]=dp[i-1][j],dp[2][0]=dp[1][0]。

aa**

bb**

cc**

不创造相邻不同色是在已经有足够相邻不同色的情况下派上用场。

接下来第3块想创造1个相邻不同色则还是 dp[i][j]=dp[i-1][j-1]*(m-1)

aab*   aac*

bba*   bbc*

cca*   ccb*

所以状态转移方程是

dp[i][j]=dp[i-1][j-1]*(m-1) + dp[i-1][j];

记得求模,随便模。

类似那些dp[1][1],dp[2][2]这种不可能存在的东西当作0处理就可以了,1块板1个不同???2块板2个不同???

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<math.h>
#include<map>
#include<string>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std; ll n,m,k;
ll dp[][];
ll p=; int main()
{
while(scanf("%lld %lld %lld",&n,&m,&k)!=EOF)
{
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
dp[i][]=m;///没有不同则是全部板都是一种颜色,无论板多长
for(int i=;i<=n;i++)
for(int j=;j<=k;j++)
dp[i][j] = ( dp[i-][j-]*(m-)%p + dp[i-][j] )%p;
printf("%lld\n",dp[n][k]);
}
return ;
}

dp解法

组合数解法:

k个相邻不同色,至少需要k+1个板块来完成。

对于第1个板块,有m种可能。

剩下还有n-1个板块,在拿出k个板块来和第1个一起创造k个相邻不同色,任取k个,C( n-1,k )。

对于后面这所有的板块,有2种情况。

1.属于k个板块之一,则要与上一个板块不同,才能创造相邻不同色,它有(m-1)种涂色方法。

2.不属于k个板块之一,那么要与上一个板块相同,不变!不需要乘什么乱七八糟的东西。

公式: m * C( n-1,k ) * (m-1)^k

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<math.h>
#include<map>
#include<string>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std; ll n,m,k;
ll p=;
ll C[][];///C[i][j]表示从i个里拿j个
void init()
{
memset(C,,sizeof(C));
for(int i=;i<;i++)
C[i][]=C[i][i]=;
for(int i=;i<;i++)
for(int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%p;///组合恒等式
/*
for(int i=0;i<=10;i++)
{
for(int j=0;j<=i;j++)
printf("%5lld",C[i][j]);
printf("\n");
}*/
} int main()
{
init();
while(scanf("%lld %lld %lld",&n,&m,&k)!=EOF)
{
ll ans=m*C[n-][k]%p;
for(int i=;i<=k;i++)
ans=ans*(m-)%p;
printf("%lld\n",ans);
}
return ;
}

组合数解法

CF1081C-Colorful Bricks-(dp||组合数)的更多相关文章

  1. CF1081C Colorful Bricks

    思路: dp[i][j]表示到第i个砖块为止共计有j个砖块和它左边的砖块颜色不同. 实现: #include <bits/stdc++.h> using namespace std; ty ...

  2. Avito Cool Challenge 2018:C. Colorful Bricks

    C. Colorful Bricks 题目链接:https://codeforces.com/contest/1081/problem/C 题意: 有n个横向方块,一共有m种颜色,然后有k个方块的颜色 ...

  3. Avito Cool Challenge 2018 C. Colorful Bricks 【排列组合】

    传送门:http://codeforces.com/contest/1081/problem/C C. Colorful Bricks time limit per test 2 seconds me ...

  4. noj 2033 一页书的书 [ dp + 组合数 ]

    传送门 一页书的书 时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte总提交 : 53            测试通过 : 1 ...

  5. 【区间dp+组合数+数学期望】Expression

    https://www.bnuoj.com/v3/contest_show.php?cid=9148#problem/I [题意] 给定n个操作数和n-1个操作符,组成一个数学式子.每次可以选择两个相 ...

  6. Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )

    On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...

  7. LightOJ - 1246 Colorful Board(DP+组合数)

    http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...

  8. Codeforces - 1081C - Colorful Bricks - 简单dp - 组合数学

    https://codeforces.com/problemset/problem/1081/C 这道题是不会的,我只会考虑 $k=0$ 和 $k=1$ 的情况. $k=0$ 就是全部同色, $k=1 ...

  9. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  10. Contest 20140708 testB dp 组合数

    testB 输入文件: testB.in  输出文件testB.out 时限3000ms 问题描述: 定义这样一个序列(a1,b1),(a2,b2),…,(ak,bk)如果这个序列是方序列的话必须满足 ...

随机推荐

  1. oracle 错误 TNS-01190与oracle 登入没反应操作

    1,问题描述 [oracle@node2 ~]$ lsnrctl stop LSNRCTL - Production on -MAY- :: Copyright (c) , , Oracle. All ...

  2. [转载]3.11 UiPath存在文本Text Exists的介绍和使用

    一.Text Exists的介绍 检查是否在给定的UI元素中找到了文本,输出的是一个布尔值 二.Text Exists在UiPath中的使用 1.打开设计器,在设计库中新建一个Sequence,为序列 ...

  3. 【JSWC2019】 小X的咒语

    [JSWC2019] 小X的咒语 \(\\\) 首先这道题有三个限制: 每个点恰好两个出度和入度. 没有自环. 没有重边. 我们先定义几个变量: \(h_{i,j}\):表示有\(i\)个出度入度为\ ...

  4. 如何解决aws解绑银行卡问题?

    首先先来说明一下我自己的情况? 一年的免费使用 前提:没有开启任何的实例服务 先贴一条官方的解释 关于我小白一个.学校课程要求使用aws,注册之后在网络上看到一堆人踩坑,aws的扣费就是个坑! 预授权 ...

  5. nodejs anywhere 搭建本地静态文件服务

    一.背景 工作中有时候往往会遇到下述场景:例如需要将新打好的安装包等文件临时性的给到同事,可能还需要给到多个同事.这时,我们往往有如下几种方案: 1,一般都会有公司内部的文件系统,上传文件后将对应的地 ...

  6. HDU 2007-11 Programming Contest

    Can you find it? Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/10000 K (Java/Others ...

  7. 黑科技!仅需 3 行代码,就能将 Gitter 集成到个人网站中,实现一个 IM 即时通讯聊天室功能?

    欢迎关注个人微信公众号: 小哈学Java, 文末分享阿里 P8 高级架构师吐血总结的 <Java 核心知识整理&面试.pdf>资源链接!! 个人网站: https://www.ex ...

  8. pod install速度慢,pod repo update 速度慢解决方法

    相信大家已经感受到pod install速度越来越慢了,网上提供了几种解决方案,但是都没有完全解决速度慢的问题. 使用国内镜像的Specs 在pod install时使用命令pod install - ...

  9. DevExpress的下拉框控件LookUpEdit的使用、添加item选项值、修改默认显示值

    场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...

  10. python高级编程——网络编程(三)

    TCP和并发服务器 与UDP不同的是,他是一个面向连接的,可靠的数据传输协议 TCP通信比较复杂 先写一个TCP服务器,一般步骤如下: 1.首先是要创建一个socket套接字:socket() 2.服 ...