深度学习面试题28:标签平滑(Label smoothing)
目录
产生背景
工作原理
参考资料
产生背景 |
假设选用softmax交叉熵训练一个三分类模型,某样本经过网络最后一层的输出为向量x=(1.0, 5.0, 4.0),对x进行softmax转换输出为:
假设该样本y=[0, 1, 0],那损失loss:
按softmax交叉熵优化时,针对这个样本而言,会让0.721越来越接近于1,因为这样会减少loss,但是这有可能造成过拟合。可以这样理解,如果0.721已经接近于1了,那么网络会对该样本十分“关注”,也就是过拟合。我们可以通过标签平滑的方式解决。
以下是论文中对此问题的阐述:
工作原理 |
假设有一批数据在神经网络最后一层的输出值和他们的真实标签
out = np.array([[4.0, 5.0, 10.0], [1.0, 5.0, 4.0], [1.0, 15.0, 4.0]])
y = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 0]])
直接计算softmax交叉熵损失:
res = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=out, label_smoothing=0)
print(tf.Session().run(res))
结果为:0.11191821843385696
使用标签平滑后:
res2 = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=out, label_smoothing=0.001)
print(tf.Session().run(res2))
结果为:0.11647378653287888
可以看出,损失比之前增加了,他的标签平滑的原理是对真实标签做了改变,源码里的公式为:
# new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes
new_onehot_labels = y * (1 - 0.001) + 0.001 / 3
print(y)
print(new_onehot_labels)
[[0 0 1]
[0 1 0]
[0 1 0]]
[[3.33333333e-04 3.33333333e-04 9.99333333e-01]
[3.33333333e-04 9.99333333e-01 3.33333333e-04]
[3.33333333e-04 9.99333333e-01 3.33333333e-04]]
然后使用平滑标签计算softmax交叉熵就能得到最终的结果了,我们也可以验证一下:
res3 = tf.losses.softmax_cross_entropy(onehot_labels=new_onehot_labels, logits=out, label_smoothing=0)
print(tf.Session().run(res3))
结果为:0.11647378653287888
完整代码:
import numpy as np
import tensorflow as tf out = np.array([[4.0, 5.0, 10.0], [1.0, 5.0, 4.0], [1.0, 15.0, 4.0]])
y = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 0]]) res = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=out, label_smoothing=0)
print(tf.Session().run(res)) res2 = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=out, label_smoothing=0.001)
print(tf.Session().run(res2)) # new_onehot_labels = onehot_labels * (1 - label_smoothing)
# + label_smoothing / num_classes new_onehot_labels = y * (1 - 0.001) + 0.001 / 3
print(y)
print(new_onehot_labels)
res3 = tf.losses.softmax_cross_entropy(onehot_labels=new_onehot_labels, logits=out, label_smoothing=0)
print(tf.Session().run(res3))
参考资料 |
Rethinking the Inception Architecture for Computer Vision
标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法
深度学习面试题28:标签平滑(Label smoothing)的更多相关文章
- 深度学习面试题29:GoogLeNet(Inception V3)
目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深 ...
- 深度学习面试题27:非对称卷积(Asymmetric Convolutions)
目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减 ...
- 深度学习面试题13:AlexNet(1000类图像分类)
目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是 ...
- 深度学习面试题26:GoogLeNet(Inception V2)
目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separab ...
- 深度学习面试题17:VGGNet(1000类图像分类)
目录 VGGNet网络结构 论文中还讨论了其他结构 参考资料 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的 ...
- 深度学习面试题16:小卷积核级联卷积VS大卷积核卷积
目录 感受野 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 小卷积核的优势 参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(fe ...
- 深度学习面试题14:Dropout(随机失活)
目录 卷积层的dropout 全连接层的dropout Dropout的反向传播 Dropout的反向传播举例 参考资料 在训练过程中,Dropout会让输出中的每个值以概率keep_prob变为原来 ...
- 深度学习面试题12:LeNet(手写数字识别)
目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起 ...
- 深度学习面试题07:sigmod交叉熵、softmax交叉熵
目录 sigmod交叉熵 Softmax转换 Softmax交叉熵 参考资料 sigmod交叉熵 Sigmod交叉熵实际就是我们所说的对数损失,它是针对二分类任务的损失函数,在神经网络中,一般输出层只 ...
随机推荐
- MySQL中使用函数时,与后面括号不能之间不能根空格
修改前代码: select MAX (article_order) from mall_school_article where 1=1 and is_deleted = 0 and status = ...
- 使用PLSQL工具连接远程Oracle
在不安装Oracle的情况下使用PLSQL连接远程的数据库步骤: 1)官网下载Instant client工具包 http://www.oracle.com/us/solutions/index-09 ...
- 3D中OBJ文件格式详解
常见到的*.obj文件有两种:第一种是基于COFF(Common Object File Format)格式的OBJ文件(也称目标文件),这种格式用于编译应用程序:第二种是Alias|Wavefron ...
- VLAN实验3:理解Hybrid接口的应用
实验环境 实验拓扑图 实验编址 实验步骤1.基本配置按照实验编址为PC配置IP地址,以PC5为例 在PC5与PC1通过ping命令测试,发现通讯正常.(以此为例,其他的我就不一一截图测试了.) 在S1 ...
- QT5无法定位程序输入点 于动态链接库QtCore5.dll的解决
本人新手刚接触QT5,今天在写程序时,在QtCreator中可以运行,但是单独运行.exe文件时报错 之后发现是因为我之前在path路径中添加了MinGw,导致里面也有Qt库.但是我编译的时候用的是安 ...
- XPath知识点【一】
什么是 XPath? XPath 使用路径表达式在 XML 文档中进行导航 XPath 包含一个标准函数库 XPath 是 XSLT 中的主要元素 XPath 是一个 W3C 标准 XPath 路径表 ...
- websocket实现心跳连接
在使用websocket的时候,遇到了一个websocket在连接一段时间就异常断开连接了.第一想法就是重新去连接websocket(websock.onopen),后来发现这种方式是错误的,查阅文档 ...
- Codeforces H. Maximal GCD(贪心)
题目描述: H. Maximal GCD time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Spring4- 04-Spring简易整合Mybatis -导入jar包/ 正常编写pojo/ 编写spring 配置文件
笔记要点&出错分析与总结 POJO(Plain Ordinary Java Object)简单的Java对象,实际就是普通JavaBeans,工程组织 (AirportService为机场 ...
- PCL安装与配置
一.配置环境 1.win7 64位2.Visual Studio 2015 二 .准备工作 安装包准备: 移步:https://www.cnblogs.com/weiyouqing/p/8046387 ...