[WC2010]重建计划(长链剖分版)
传送门
Description
Solution
时隔多年,补上了这题的长链剖分写法
感觉比点分治要好写的多
我们假设\(pos\)是当前点的\(dfn\),它距离所在链的底端的边的数量是\(len\),距离是\(siz\)
那么我们要求得\(g[pos...pos+len]\)
其中\(g[pos+i]+siz\)表示的是当前点往下长度为\(i\)的最长链的大小
初始情况下,\(g[pos]=-siz[pos]\)
为什么要这么写呢?
因为转移重儿子的时候,我们直接把数组右移了一位,这样子定义使得原先的值仍然有意义
考虑如何转移?
对于一个轻儿子,\(dfn\)为\(pv\)
那么\(当前点,轻儿子g[pos+j+1]\leftarrow siz[pv]+g[pv+j]+w(当前点,轻儿子)-siz\)
考虑如何更新答案
对于\(lca\)为当前点的链
首先计算一个端点就是当前点的:\((g[pos+i])_{min}+siz\)
然后是两个端点分别处于不同子树的
枚举一个轻儿子子树内的链长:\(当前点,轻儿子(g[pos+i])_{min}+siz+(siz[pv]+g[pv+j])+(w(当前点,轻儿子))\)
求min的部分用线段树优化
Code
#include<bits/stdc++.h>
#define ll long long
#define reg register
#define ri reg int i
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
const int MN=1e5+5;
const double eps=1e-4,inf=0x3f3f3f3f;
double siz[MN],g[MN],ans,mid;
struct edge{int to,w,nex;}e[MN<<1];int hr[MN],en;
inline void ins(int x,int y,int w)
{
e[++en]=(edge){y,w,hr[x]};hr[x]=en;
e[++en]=(edge){x,w,hr[y]};hr[y]=en;
}
int dfn[MN],len[MN],mx[MN],w[MN],ind,n,L,R;
struct SegmentTree
{
#define ls (x<<1)
#define rs (x<<1|1)
#define Mid ((l+r)>>1)
double t[MN<<2];
inline void clear(){for(ri=0;i<(MN<<2);++i)t[i]=-inf;}
void Modify(int x,int l,int r,int a,double val)
{
if(l==r) return(void)(t[x]=max(t[x],val));
if(a<=Mid) Modify(ls,l,Mid,a,val);
else Modify(rs,Mid+1,r,a,val);
t[x]=max(t[ls],t[rs]);
}
double Query(int x,int l,int r,int a,int b)
{
if(l==a&&r==b) return t[x];if(a>b)return -inf;
if(b<=Mid) return Query(ls,l,Mid,a,b);
if(a>Mid) return Query(rs,Mid+1,r,a,b);
return max(Query(ls,l,Mid,a,Mid),Query(rs,Mid+1,r,Mid+1,b));
}
}T;
void dfs(int x,int f=0)
{
for(ri=hr[x];i;i=e[i].nex)if(e[i].to^f)
{
dfs(e[i].to,x);
if(len[e[i].to]>=len[mx[x]]) mx[x]=e[i].to,w[x]=e[i].w;
if(len[e[i].to]+1>len[x]) len[x]=len[e[i].to]+1;
}
}
void solve(int x,int f=0)
{
if(!dfn[x]) dfn[x]=++ind;
reg int i,j,pos=dfn[x];
if(mx[x]) solve(mx[x],x),siz[pos]=siz[pos+1]+w[x]-mid;
T.Modify(1,1,n,pos,g[pos]=-siz[pos]);
if(L<=len[x])
{
double tmp=T.Query(1,1,n,pos+L,pos+min(len[x],R));
ans=max(ans,tmp+siz[pos]);
}
for(i=hr[x];i;i=e[i].nex)if(e[i].to!=f&&e[i].to!=mx[x])
{
solve(e[i].to,x);reg int pv=dfn[e[i].to];
for(j=0;j<=len[e[i].to];++j)
{
double tmp=T.Query(1,1,n,pos+max(0,L-j-1),pos+min(len[x],R-j-1));
ans=max(ans,tmp+siz[pv]+siz[pos]+g[pv+j]+e[i].w-mid);
}
for(j=0;j<=len[e[i].to];++j)
{
double tmp=siz[pv]+g[pv+j]+e[i].w-mid-siz[pos];
if(tmp>g[pos+j+1]) T.Modify(1,1,n,pos+j+1,g[pos+j+1]=tmp);
}
}
}
bool check(){T.clear();ans=-inf;solve(1);return ans>=eps;}
int main()
{
n=read();L=read();R=read();
reg int i,x,y;
for(i=1;i<n;++i) x=read(),y=read(),ins(x,y,read());
dfs(1);double l=0.,r=1e6;
for(i=1;i<=40;++i)
{
if(l+eps>=r) break;
mid=(l+r)/2.;
if(check()) l=mid;else r=mid;
}
printf("%.3lf",l);
return 0;
}
Blog来自PaperCloud,未经允许,请勿转载,TKS!
[WC2010]重建计划(长链剖分版)的更多相关文章
- [WC2010]重建计划 长链剖分
[WC2010]重建计划 LG传送门 又一道长链剖分好题. 这题写点分治的人应该比较多吧,但是我太菜了,只会长链剖分. 如果你还不会长链剖分的基本操作,可以看看我的长链剖分总结. 首先一看求平均值最大 ...
- 「WC2010」重建计划(长链剖分/点分治)
「WC2010」重建计划(长链剖分/点分治) 题目描述 有一棵大小为 \(n\) 的树,给定 \(L, R\) ,要求找到一条长度在 \([L, R]\) 的路径,并且路径上边权的平均值最大 \(1 ...
- BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP
题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...
- BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)
题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...
- 2019.01.21 bzoj1758: [Wc2010]重建计划(01分数规划+长链剖分+线段树)
传送门 长链剖分好题. 题意简述:给一棵树,问边数在[L,R][L,R][L,R]之间的路径权值和与边数之比的最大值. 思路: 用脚指头想都知道要01分数规划. 考虑怎么checkcheckcheck ...
- WC2010 BZOJ1758 重建计划_长链剖分
题目大意: 求长度$\in [L,U]$的路径的最大边权和平均值. 题解 首先二分就不用说了,分数规划大家都懂. 这题有非常显然的点分治做法,但还是借着这个题学一波长链剖分. 其长链剖分本身也没啥,就 ...
- BZOJ 1758 / Luogu P4292 [WC2010]重建计划 (分数规划(二分/迭代) + 长链剖分/点分治)
题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. ...
- [WC2010]重建计划(长链剖分+线段树+分数规划)
看到平均值一眼分数规划,二分答案mid,边权变为w[i]-mid,看是否有长度在[L,R]的正权路径.设f[i][j]表示以i为根向下j步最长路径,用长链剖分可以优化到O(1),查询答案线段树即可,复 ...
- 洛谷 P4292 - [WC2010]重建计划(长链剖分+线段树)
题面传送门 我!竟!然!独!立!A!C!了!这!道!题!incredible! 首先看到这类最大化某个分式的题目,可以套路地想到分数规划,考虑二分答案 \(mid\) 并检验是否存在合法的 \(S\) ...
随机推荐
- debug 查询服务日志,用于定位服务在运行和启动过程中出现的问题
vim /usr/lib/systemd/system/sshd.service [Unit] Description=OpenSSH server daemon Documentation=man: ...
- JavaScript的深浅复制
JavaScript的深浅复制 为什么有深复制.浅复制? JavaScript中有两种数据类型,基本数据类型如undefined.null.boolean.number.string,另一类是Obje ...
- mysql查看当前实时连接数
静态查看: SHOW PROCESSLIST; SHOW FULL PROCESSLIST; SHOW VARIABLES LIKE '%max_connections%'; SHOW STATUS ...
- 【转】关于TCP/IP,必须知道的十个知识点
本文整理了一些TCP/IP协议簇中需要必知必会的十大问题,既是面试高频问题,又是程序员必备基础素养. 一.TCP/IP模型 TCP/IP协议模型(Transmission Control Protoc ...
- 网络时间同步服务和chrony
时间同步和chrony 时间同步:多主机协作工作时,各个主机时间同步很重要,时间不一致会造成很多重要应用的故障,如:加密协议,日志,集群等, 利用NTP(Network Time Protocol) ...
- centos7 安装 mongodb 4.0.0
原文链接:http://www.webosss.com/article/detail/38 下载mongodb:地址:https://fastdl.mongodb.org/linux/mongodb- ...
- php最快测试环境建立
win下待验证,但linux下真快. 不要nginx,不要php-fpm,就一个字,快! 1, 安装php yum install php 输出如下: Dependencies Resolved == ...
- 下载安装Zookeeper
下载地址 http://archive.apache.org/dist/zookeeper/ 进入如上的Url,选择合适的zookeeper版本,下载"tar.gz"文件: 解压安 ...
- 【转】Deep dive into pipe function in RxJS
原文: https://codewithstyle.info/deep-dive-pipe-function-rxjs/ --------------------------------------- ...
- Eclipse下,Maven+JRebel安装破解手记
Java开发中,Maven已经是标配,使用JRebel能大大地提高工作效率,特别是在Web开发中,不用重启tomcat,大大地提高了工作效率. 1.前提条件 安装JDK 8 安装eclipse, ec ...
