[转帖]面试问Kafka,这一篇全搞定
面试问Kafka,这一篇全搞定
https://os.51cto.com/art/201911/606207.htm
图片来自 Pexels
Kafka 基础
消息系统的作用
大部分小伙伴应该都清楚,这里用机油装箱举个例子:
所以消息系统就是如上图我们所说的仓库,能在中间过程作为缓存,并且实现解耦合的作用。
引入一个场景,我们知道中国移动,中国联通,中国电信的日志处理,是交给外包去做大数据分析的,假设现在它们的日志都交给了你做的系统去做用户画像分析。
按照刚刚前面提到的消息系统的作用,我们知道了消息系统其实就是一个模拟缓存,且仅仅是起到了缓存的作用而并不是真正的缓存,数据仍然是存储在磁盘上面而不是内存。
Topic 主题
Kafka 学习了数据库里面的设计,在里面设计了 Topic(主题),这个东西类似于关系型数据库的表:
此时我需要获取中国移动的数据,那就直接监听 TopicA 即可。
Partition 分区
Kafka 还有一个概念叫 Partition(分区),分区具体在服务器上面表现起初就是一个目录。
一个主题下面有多个分区,这些分区会存储到不同的服务器上面,或者说,其实就是在不同的主机上建了不同的目录。
这些分区主要的信息就存在了 .log 文件里面。跟数据库里面的分区差不多,是为了提高性能。
至于为什么提高了性能,很简单,多个分区多个线程,多个线程并行处理肯定会比单线程好得多。
Topic 和 Partition 像是 HBase 里的 Table 和 Region 的概念,Table 只是一个逻辑上的概念,真正存储数据的是 Region。
这些 Region 会分布式地存储在各个服务器上面,对应于 Kafka,也是一样,Topic 也是逻辑概念,而 Partition 就是分布式存储单元。
这个设计是保证了海量数据处理的基础。我们可以对比一下,如果 HDFS 没有 Block 的设计,一个 100T 的文件也只能单独放在一个服务器上面,那就直接占满整个服务器了,引入 Block 后,大文件可以分散存储在不同的服务器上。
注意:
分区会有单点故障问题,所以我们会为每个分区设置副本数。
分区的编号是从 0 开始的。
Producer 生产者
往消息系统里面发送数据的就是生产者:
Consumer 消费者
从 Kafka 里读取数据的就是消费者:
Message 消息
Kafka 里面的我们处理的数据叫做消息。
Kafka 的集群架构
创建一个 TopicA 的主题,3 个分区分别存储在不同的服务器,也就是 Broker 下面。
Topic 是一个逻辑上的概念,并不能直接在图中把 Topic 的相关单元画出:
需要注意:Kafka 在 0.8 版本以前是没有副本机制的,所以在面对服务器宕机的突发情况时会丢失数据,所以尽量避免使用这个版本之前的 Kafka。
Replica 副本
Kafka 中的 Partition 为了保证数据安全,所以每个 Partition 可以设置多个副本。
此时我们对分区 0,1,2 分别设置 3 个副本(其实设置两个副本是比较合适的):
而且其实每个副本都是有角色之分的,它们会选取一个副本作为 Leader,而其余的作为 Follower。
我们的生产者在发送数据的时候,是直接发送到 Leader Partition 里面,然后 Follower Partition 会去 Leader 那里自行同步数据,消费者消费数据的时候,也是从 Leader 那去消费数据的。
Consumer Group 消费者组
我们在消费数据时会在代码里面指定一个 group.id,这个 id 代表的是消费组的名字,而且这个 group.id 就算不设置,系统也会默认设置:
- conf.setProperty("group.id","tellYourDream")
我们所熟知的一些消息系统一般来说会这样设计,就是只要有一个消费者去消费了消息系统里面的数据,那么其余所有的消费者都不能再去消费这个数据。
可是 Kafka 并不是这样,比如现在 ConsumerA 去消费了一个 TopicA 里面的数据:
- consumerA:
- group.id = a
- consumerB:
- group.id = a
- consumerC:
- group.id = b
- consumerD:
- group.id = b
再让 ConsumerB 也去消费 TopicA 的数据,它是消费不到了,但是我们在 ConsumerC 中重新指定一个另外的 group.id,ConsumerC 是可以消费到 TopicA 的数据的。
而 ConsumerD 也是消费不到的,所以在 Kafka 中,不同组可有唯一的一个消费者去消费同一主题的数据。
所以消费者组就是让多个消费者并行消费信息而存在的,而且它们不会消费到同一个消息。
如下,ConsumerA,B,C 是不会互相干扰的:
- consumer group:a
- consumerA
- consumerB
- consumerC
如图,因为前面提到过了消费者会直接和 Leader 建立联系,所以它们分别消费了三个 Leader,所以一个分区不会让消费者组里面的多个消费者去消费,但是在消费者不饱和的情况下,一个消费者是可以去消费多个分区的数据的。
Controller
熟知一个规律:在大数据分布式文件系统里面,95% 的都是主从式的架构,个别是对等式的架构,比如 ElasticSearch。
Kafka 也是主从式的架构,主节点就叫 Controller,其余的为从节点,Controller 是需要和 Zookeeper 进行配合管理整个 Kafka 集群。
Kafka 和 Zookeeper 如何配合工作
Kafka 严重依赖于 Zookeeper 集群,所有的 Broker 在启动的时候都会往 Zookeeper 进行注册,目的就是选举出一个 Controller。
这个选举过程非常简单粗暴,就是一个谁先谁当的过程,不涉及什么算法问题。
那成为 Controller 之后要做啥呢,它会监听 Zookeeper 里面的多个目录,例如有一个目录 /brokers/,其他从节点往这个目录上**注册(就是往这个目录上创建属于自己的子目录而已)**自己。
这时命名规则一般是它们的 id 编号,比如 /brokers/0,1,2。注册时各个节点必定会暴露自己的主机名,端口号等等的信息。
此时 Controller 就要去读取注册上来的从节点的数据(通过监听机制),生成集群的元数据信息,之后把这些信息都分发给其他的服务器,让其他服务器能感知到集群中其它成员的存在。
此时模拟一个场景,我们创建一个主题(其实就是在 Zookeeper 上 /topics/topicA 这样创建一个目录而已),Kafka 会把分区方案生成在这个目录中。
此时 Controller 就监听到了这一改变,它会去同步这个目录的元信息,然后同样下放给它的从节点,通过这个方法让整个集群都得知这个分区方案,此时从节点就各自创建好目录等待创建分区副本即可。这也是整个集群的管理机制。
加餐时间
Kafka 性能好在什么地方?
①顺序写
操作系统每次从磁盘读写数据的时候,需要先寻址,也就是先要找到数据在磁盘上的物理位置,然后再进行数据读写,如果是机械硬盘,寻址就需要较长的时间。
Kafka 的设计中,数据其实是存储在磁盘上面,一般来说,会把数据存储在内存上面性能才会好。
但是 Kafka 用的是顺序写,追加数据是追加到末尾,磁盘顺序写的性能极高,在磁盘个数一定,转数达到一定的情况下,基本和内存速度一致。
随机写的话是在文件的某个位置修改数据,性能会较低。
②零拷贝
先来看看非零拷贝的情况:
可以看到数据的拷贝从内存拷贝到 Kafka 服务进程那块,又拷贝到 Socket 缓存那块,整个过程耗费的时间比较高。
Kafka 利用了 Linux 的 sendFile 技术(NIO),省去了进程切换和一次数据拷贝,让性能变得更好。
日志分段存储
Kafka 规定了一个分区内的 .log 文件最大为 1G,做这个限制目的是为了方便把 .log 加载到内存去操作:
00000000000000000000.index00000000000000000000.log00000000000000000000.timeindex00000000000005367851.index00000000000005367851.log00000000000005367851.timeindex00000000000009936472.index00000000000009936472.log00000000000009936472.timeindex
这个 9936472 之类的数字,就是代表了这个日志段文件里包含的起始 Offset,也就说明这个分区里至少都写入了接近 1000 万条数据了。
Kafka Broker 有一个参数,log.segment.bytes,限定了每个日志段文件的大小,最大就是 1GB。
一个日志段文件满了,就自动开一个新的日志段文件来写入,避免单个文件过大,影响文件的读写性能,这个过程叫做 log rolling,正在被写入的那个日志段文件,叫做 active log segment。
如果大家有了解 HDFS 就会发现 NameNode 的 edits log 也会做出限制,所以这些框架都是会考虑到这些问题。
Kafka 的网络设计
Kafka 的网络设计和 Kafka 的调优有关,这也是为什么它能支持高并发的原因:
首先客户端发送请求全部会先发送给一个 Acceptor,Broker 里面会存在 3 个线程(默认是 3 个)。
这 3 个线程都是叫做 Processor,Acceptor 不会对客户端的请求做任何的处理,直接封装成一个个 socketChannel 发送给这些 Processor 形成一个队列。
发送的方式是轮询,就是先给第一个 Processor 发送,然后再给第二个,第三个,然后又回到第一个。
消费者线程去消费这些 socketChannel 时,会获取一个个 Request 请求,这些 Request 请求中就会伴随着数据。
线程池里面默认有 8 个线程,这些线程是用来处理 Request 的,解析请求,如果 Request 是写请求,就写到磁盘里。读的话返回结果。
Processor 会从 Response 中读取响应数据,然后再返回给客户端。这就是 Kafka 的网络三层架构。
所以如果我们需要对 Kafka 进行增强调优,增加 Processor 并增加线程池里面的处理线程,就可以达到效果。
Request 和 Response 那一块部分其实就是起到了一个缓存的效果,是考虑到 Processor 们生成请求太快,线程数不够不能及时处理的问题。
所以这就是一个加强版的 Reactor 网络线程模型。
总结
集群的搭建会再找时间去提及。这一篇简单地从角色到一些设计的方面讲述了 Kafka 的一些基础,在之后的更新中会继续逐步推进,进行更加深入浅出的讲解。
[转帖]面试问Kafka,这一篇全搞定的更多相关文章
- ELK集中化日志解决方案——看这一篇全搞定
一.前言 在软件发开技术管理里有两个永恒经典的问题,适合我们初到一家软件企业或一家公司的科技团队,来判断自己该从哪里入手帮助整个团队提升科技水平和产能.问题一是"在我们团队里,只涉及一行代码 ...
- SpringBoot就这一篇全搞定
Spring Boot从初识到实战 文章收集在 GitHub JavaEgg 中,欢迎star+指导 JavaEgg--<"Java技术员"成长手册>,包含Java基础 ...
- 一篇搞定RSA加密与SHA签名|与Java完全同步
基础知识 什么是RSA?答:RSA是一种非对称加密算法,常用来对传输数据进行加密,配合上数字摘要算法,也可以进行文字签名. RSA加密中padding?答:padding即填充方式,由于RSA加密算法 ...
- 篇3 安卓app自动化测试-搞定界面元素
篇3 安卓app自动化测试-搞定界面元素 --lamecho辣么丑 1.1概要 大家好! 我是lamecho(辣么丑),今天是<安卓app自动化测试>的第三 ...
- 大数据之kafka-02.搞定kafka专业术语
02.搞定kafka专业术语 在kafka的世界中有很多概念和术语是需要我们提前理解并且熟练掌握的,下面来盘点一下. 之前我们提到过,kafka属于分布式的消息引擎系统,主要功能是提供一套完善的消息发 ...
- 2021升级版微服务教程6—Ribbon使用+原理+整合Nacos权重+实战优化 一篇搞定
2021升级版SpringCloud教程从入门到实战精通「H版&alibaba&链路追踪&日志&事务&锁」 教程全目录「含视频」:https://gitee.c ...
- 如何快速全面掌握Kafka?这篇文章总结了
Kafka 是目前主流的分布式消息引擎及流处理平台,经常用做企业的消息总线.实时数据管道,本文挑选了 Kafka 的几个核心话题,帮助大家快速掌握 Kafka,包括: Kafka 体系架构 Kafka ...
- Kafka【第一篇】Kafka集群搭建
Kafka初识 1.Kafka使用背景 在我们大量使用分布式数据库.分布式计算集群的时候,是否会遇到这样的一些问题: 我们想分析下用户行为(pageviews),以便我们设计出更好的广告位 我想对用户 ...
- 【Kafka入门】Kafka入门第一篇:基础概念篇
Kafka简介 Kafka是一个消息系统服务框架,它以提交日志的形式存储消息,并且消息的存储是分布式的,为了提供并行性和容错保障,消息的存储是分区冗余形式存在的. Kafka的架构 Kafka中包含以 ...
随机推荐
- php dirname 的简单使用
dirname dirname-返回路径中的目录部分 说明 dirname(string$path) :string 给出一个包含有指向一个文件的全路径的字符串,本函数返回去掉文件名后的目录名. 参数 ...
- vue用async、await实现同步请求
以下是vue method的demo: loadTableData : async function() { var reses = await $.ajax({ type:'post', url:' ...
- Linux shell if条件判断1
shell 逻辑控制语句: 分支判断结构 if case 循环结构 for while unt ...
- Game Engine Architecture 12
[Game Engine Architecture 12] 1.the field of physics is vast, and what most of today’s game engines ...
- 【转】Pandas学习笔记(七)plot画图
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- request.user怎么来的
1.登录认证(auth认证登录后login后设置了session等信息包含用户的pk) >>>>> 2.用户再次请求登录的时候,通过 ...
- drf框架 - 视图家族 | GenericAPIView | mixins | generics | viewsets
视图家族 view:视图 generics:工具视图 mixins:视图工具集 viewsets:视图集 学习曲线: APIView => GenericAPIView => mixins ...
- 201871010104-陈园园 《面向对象程序设计(java)》第二周学习总结
201871010104-陈园园 <面向对象程序设计(java)>第二周学习总结 项目 内容 这个作业属于哪个课程 ttps://www.cnblogs.com/nwnu-daizh/ 这 ...
- 201671030126 赵佳平 实验十四 团队项目评审&课程学习总结
项目 内容 这个作业属于那个课程 2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十四 团队项目评审&课程学习总结 作业学习目标 掌握软件项目评审会流程:反思 ...
- sublime ctrl b突然不能用解决方法
Sublime Text 2 ?ctrl+b 如果出现运行为空白,按ctrl+`来显示错误,如下所示,转载了一篇解决方案 ? 文章参考:http://eric.themoritzfamily.com/ ...