COGS 有标号的DAG/强连通图计数
一堆神仙容斥+多项式……
有标号的DAG计数 I
考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的点可以选择连向它,剩下的点之间也可以连边。
但是注意到这样子转移可能会存在剩下的点中有点没有出度的情况,考虑容斥解决:设枚举的出度为\(0\)的点的个数为\(i\)时的容斥系数为\(f_i\),那么一个实际上存在\(x\)个出度为\(0\)的点的DAG的贡献就是\(\sum\limits_{i=1}^x \binom{x}{i} f_i = 1\),不难由二项式定理知道\(f_i = (-1)^{i-1}\)
那么转移式就是\(f_i = \sum\limits_{j=1}^i \binom{i}{j} (-1)^{j-1} 2^{j(i-j)} f_{i-j}\)。
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
const int MOD = 10007;
int dp[5003] , C[5003][5003] , poww2[6250003] , N;
int main(){
freopen("DAG.in","r",stdin);
freopen("DAG.out","w",stdout);
cin >> N;
poww2[0] = 1;
for(int i = 1 ; i <= (N + 1) / 2 * ((N + 1) / 2) ; ++i)
poww2[i] = (poww2[i - 1] << 1) % MOD;
for(int i = 0 ; i <= N ; ++i){
C[i][0] = 1;
for(int j = 1 ; j <= i ; ++j)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
}
dp[0] = 1;
for(int i = 1 ; i <= N ; ++i)
for(int j = 1 ; j <= i ; ++j)
dp[i] = (dp[i] + ((j - 1) & 1 ? -1 : 1) * dp[i - j] * C[i][j] % MOD * poww2[j * (i - j)] % MOD + MOD) % MOD;
cout << dp[N];
return 0;
}
有标号的DAG计数 II
考虑使用多项式优化I中的做法。
一个前置芝士是使用组合数拆\(ij\):\(ij = \binom{i}{2} + \binom{j+1}{2} - \binom{i-j}{2}\)
\]
\]
\]
可以直接多项式求逆了。但是值得注意的一件事情是余项:因为\(j\)的下标从\(1\)开始,所以当\(i=0\)的时候,左式求出来为\(1\),但是右式求出来为\(0\)。在多项式运算的时候记得补上这个余项。
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
const int _ = (1 << 18) + 7 , MOD = 998244353;
int poww(long long a , long long b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD; b >>= 1;
}
return times;
}
namespace poly{
const int G = 3 , INV = 332748118;
int dir[_] , need , invnd , A[_] , B[_];
void init(int x){
need = 1;
while(need < x) need <<= 1;
invnd = poww(need , MOD - 2);
for(int i = 1 ; i < need ; ++i)
dir[i] = (dir[i >> 1] >> 1) | (i & 1 ? need >> 1 : 0);
}
void NTT(int *arr , int tp){
for(int i = 1 ; i < need ; ++i)
if(i < dir[i])
arr[i] ^= arr[dir[i]] ^= arr[i] ^= arr[dir[i]];
for(int i = 1 ; i < need ; i <<= 1){
int wn = poww(tp == 1 ? G : INV , MOD / i / 2);
for(int j = 0 ; j < need ; j += i << 1){
long long w = 1;
for(int k = 0 ; k < i ; ++k , w = w * wn % MOD){
int x = arr[j + k] , y = arr[i + j + k] * w % MOD;
arr[j + k] = x + y >= MOD ? x + y - MOD : x + y;
arr[i + j + k] = x < y ? x + MOD - y : x - y;
}
}
}
if(tp != 1)
for(int i = 0 ; i < need ; ++i)
arr[i] = 1ll * arr[i] * invnd % MOD;
}
#define clr(x) memset(x , 0 , sizeof(int) * need)
void getInv(int *a , int *b , int len){
if(len == 1){b[0] = poww(a[0] , MOD - 2); return;}
getInv(a , b , ((len + 1) >> 1));
memcpy(A , a , sizeof(int) * len); memcpy(B , b , sizeof(int) * len);
init(len * 2 + 3); NTT(A , 1); NTT(B , 1);
for(int i = 0 ; i < need ; ++i) A[i] = 1ll * A[i] * B[i] % MOD * B[i] % MOD;
NTT(A , -1);
for(int i = 0 ; i < len ; ++i)
b[i] = (2ll * b[i] - A[i] + MOD) % MOD;
clr(A); clr(B);
}
}
using poly::getInv;
#define ch2(x) (1ll * x * (x - 1) / 2)
int F[_] , ans[_] , inv[_] , jc[_] , N;
void init(){
jc[0] = 1;
for(int i = 1 ; i <= N ; ++i) jc[i] = 1ll * jc[i - 1] * i % MOD;
inv[N] = poww(jc[N] , MOD - 2);
for(int i = N - 1 ; i >= 0 ; --i) inv[i] = inv[i + 1] * (i + 1ll) % MOD;
}
int main(){
freopen("dag_count.in","r",stdin);
freopen("dag_count.out","w",stdout);
cin >> N; init();
for(int i = 1 ; i <= N ; ++i) F[i] = (MOD + ((i - 1) & 1 ? 1ll : -1ll) * inv[i] * poww(poww(2 , ch2(i)) , MOD - 2) % MOD) % MOD;
F[0] = 1; getInv(F , ans , N + 1);
cout << 1ll * ans[N] * jc[N] % MOD * poww(2 , ch2(N)) % MOD;
return 0;
}
有标号的DAG计数 III
在I和II中我们求出了可以不连通的DAG数量,而在这个部分我们强制要求DAG弱连通。
考虑用总的DAG数量减去不弱联通的DAG数量。设\(g_i\)表示点数为\(i\)的弱联通的DAG数量,总DAG数量就是I中求出的\(f_i\),而对于不连通的DAG,它一定由若干个连通的DAG构成。那么我们考虑枚举\(1\)号点所在的弱联通DAG的大小,可以得到转移式:
\(g_i = f_i - \sum\limits_{j=1}^{i-1} f_jg_{i-j} \binom{i-1}{i-j-1}\)。直接转移复杂度\(O(n^2)\)。
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
const int MOD = 10007;
int dp[5003] , g[5003] , C[5003][5003] , poww2[6250003] , N;
int main(){
freopen("DAGIII.in","r",stdin);
freopen("DAGIII.out","w",stdout);
cin >> N;
poww2[0] = 1;
for(int i = 1 ; i <= (N + 1) / 2 * ((N + 1) / 2) ; ++i)
poww2[i] = (poww2[i - 1] << 1) % MOD;
for(int i = 0 ; i <= N ; ++i){
C[i][0] = 1;
for(int j = 1 ; j <= i ; ++j)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
}
dp[0] = 1;
for(int i = 1 ; i <= N ; ++i)
for(int j = 1 ; j <= i ; ++j)
dp[i] = (dp[i] + ((j - 1) & 1 ? -1 : 1) * dp[i - j] * C[i][j] % MOD * poww2[j * (i - j)] % MOD + MOD) % MOD;
for(int i = 0 ; i <= N ; ++i){
g[i] = dp[i];
for(int j = 1 ; j < i ; ++j)
g[i] = (g[i] - dp[j] * g[i - j] % MOD * C[i - 1][i - j - 1] % MOD + MOD) % MOD;
}
cout << g[N];
return 0;
}
有标号的DAG计数 IV
有两种做法:
法一
考虑优化III中的递推式。
\]
\]
多项式求逆即可。记得根据式子注意\(f_0\)和\(g_0\)的值。
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
const int _ = (1 << 18) + 7 , MOD = 998244353;
int poww(long long a , long long b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD; b >>= 1;
}
return times;
}
namespace poly{
const int G = 3 , INV = 332748118;
int dir[_] , need , invnd , A[_] , B[_];
void init(int x){
need = 1;
while(need < x) need <<= 1;
invnd = poww(need , MOD - 2);
for(int i = 1 ; i < need ; ++i)
dir[i] = (dir[i >> 1] >> 1) | (i & 1 ? need >> 1 : 0);
}
void NTT(int *arr , int tp){
for(int i = 1 ; i < need ; ++i)
if(i < dir[i])
arr[i] ^= arr[dir[i]] ^= arr[i] ^= arr[dir[i]];
for(int i = 1 ; i < need ; i <<= 1){
int wn = poww(tp == 1 ? G : INV , MOD / i / 2);
for(int j = 0 ; j < need ; j += i << 1){
long long w = 1;
for(int k = 0 ; k < i ; ++k , w = w * wn % MOD){
int x = arr[j + k] , y = arr[i + j + k] * w % MOD;
arr[j + k] = x + y >= MOD ? x + y - MOD : x + y;
arr[i + j + k] = x < y ? x + MOD - y : x - y;
}
}
}
if(tp != 1)
for(int i = 0 ; i < need ; ++i)
arr[i] = 1ll * arr[i] * invnd % MOD;
}
#define clr(x) memset(x , 0 , sizeof(int) * need)
void getInv(int *a , int *b , int len){
if(len == 1){b[0] = poww(a[0] , MOD - 2); return;}
getInv(a , b , ((len + 1) >> 1));
memcpy(A , a , sizeof(int) * len); memcpy(B , b , sizeof(int) * len);
init(len * 2 + 3); NTT(A , 1); NTT(B , 1);
for(int i = 0 ; i < need ; ++i) A[i] = 1ll * A[i] * B[i] % MOD * B[i] % MOD;
NTT(A , -1);
for(int i = 0 ; i < len ; ++i)
b[i] = (2ll * b[i] - A[i] + MOD) % MOD;
clr(A); clr(B);
}
}
using poly::getInv;
#define ch2(x) (1ll * x * (x - 1) / 2)
int F[_] , G[_] , ans[_] , tp[_] , inv[_] , jc[_] , N;
void init(){
jc[0] = 1;
for(int i = 1 ; i <= N ; ++i) jc[i] = 1ll * jc[i - 1] * i % MOD;
inv[N] = poww(jc[N] , MOD - 2);
for(int i = N - 1 ; i >= 0 ; --i) inv[i] = inv[i + 1] * (i + 1ll) % MOD;
}
int main(){
freopen("dagIV.in","r",stdin);
freopen("dagIV.out","w",stdout);
cin >> N; init();
for(int i = 1 ; i <= N ; ++i) F[i] = (MOD + ((i - 1) & 1 ? 1ll : -1ll) * inv[i] * poww(poww(2 , ch2(i)) , MOD - 2) % MOD) % MOD;
F[0] = 1; getInv(F , G , N + 1);
for(int i = 1 ; i <= N ; ++i)
G[i] = 1ll * G[i] * jc[i] % MOD * poww(2 , ch2(i)) % MOD;
for(int i = 0 ; i <= N ; ++i)
tp[i] = 1ll * G[i] * inv[i] % MOD;
getInv(tp , ans , N + 1); poly::init(2 * N + 2);
for(int i = 1 ; i <= N ; ++i)
G[i] = 1ll * G[i] * inv[i - 1] % MOD;
G[0] = 0;
poly::NTT(G , 1); poly::NTT(ans , 1);
for(int i = 0 ; i < poly::need ; ++i)
ans[i] = 1ll * ans[i] * G[i] % MOD;
poly::NTT(ans , 0);
cout << 1ll * ans[N] * jc[N - 1] % MOD;
return 0;
}
法二
注意到III中的一句话:一个不一定连通的DAG一定由若干个连通的DAG构成,这等价于一个不一定连通的DAG是若干个连通的DAG的有标号集合。计算有标号集合可以考虑多项式Exp,那么如果设连通的DAG的数量的指数型生成函数为\(F\),不一定连通的DAG的数量的指数型生成函数为\(G\),那么\(G = e^F\),即\(F = ln\ G\)。多项式求Ln即可。
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
const int _ = (1 << 18) + 7 , MOD = 998244353;
int poww(long long a , long long b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD; b >>= 1;
}
return times;
}
namespace poly{
const int G = 3 , INV = 332748118;
int dir[_] , need , invnd , A[_] , B[_] , C[_];
void init(int x){
need = 1;
while(need < x) need <<= 1;
invnd = poww(need , MOD - 2);
for(int i = 1 ; i < need ; ++i)
dir[i] = (dir[i >> 1] >> 1) | (i & 1 ? need >> 1 : 0);
}
void NTT(int *arr , int tp){
for(int i = 1 ; i < need ; ++i)
if(i < dir[i])
arr[i] ^= arr[dir[i]] ^= arr[i] ^= arr[dir[i]];
for(int i = 1 ; i < need ; i <<= 1){
int wn = poww(tp == 1 ? G : INV , MOD / i / 2);
for(int j = 0 ; j < need ; j += i << 1){
long long w = 1;
for(int k = 0 ; k < i ; ++k , w = w * wn % MOD){
int x = arr[j + k] , y = arr[i + j + k] * w % MOD;
arr[j + k] = x + y >= MOD ? x + y - MOD : x + y;
arr[i + j + k] = x < y ? x + MOD - y : x - y;
}
}
}
if(tp != 1)
for(int i = 0 ; i < need ; ++i)
arr[i] = 1ll * arr[i] * invnd % MOD;
}
#define clr(x) memset(x , 0 , sizeof(int) * need)
void getInv(int *a , int *b , int len){
if(len == 1){b[0] = poww(a[0] , MOD - 2); return;}
getInv(a , b , ((len + 1) >> 1));
memcpy(A , a , sizeof(int) * len); memcpy(B , b , sizeof(int) * len);
init(len * 2 + 3); NTT(A , 1); NTT(B , 1);
for(int i = 0 ; i < need ; ++i) A[i] = 1ll * A[i] * B[i] % MOD * B[i] % MOD;
NTT(A , -1);
for(int i = 0 ; i < len ; ++i)
b[i] = (2ll * b[i] - A[i] + MOD) % MOD;
clr(A); clr(B);
}
void getDis(int *a , int *b , int len){
for(int i = 0 ; i < len - 1 ; ++i)
b[i] = a[i + 1] * (i + 1ll) % MOD;
b[len - 1] = 0;
}
void getInt(int *a , int *b , int len){
for(int i = 1 ; i <= len ; ++i)
b[i] = 1ll * a[i - 1] * poww(i , MOD - 2) % MOD;
}
void getLn(int *a , int *b , int len){
getInv(a , C , len); getDis(a , A , len);
init(2 * len + 1); NTT(A , 1); NTT(C , 1);
for(int i = 0 ; i < need ; ++i)
A[i] = 1ll * A[i] * C[i] % MOD;
NTT(A , -1);
getInt(A , b , len - 1); clr(A); clr(C);
}
}
using poly::getInv; using poly::getLn;
#define ch2(x) (1ll * x * (x - 1) / 2)
int F[_] , G[_] , ans[_] , tp[_] , inv[_] , jc[_] , N;
void init(){
jc[0] = 1;
for(int i = 1 ; i <= N ; ++i) jc[i] = 1ll * jc[i - 1] * i % MOD;
inv[N] = poww(jc[N] , MOD - 2);
for(int i = N - 1 ; i >= 0 ; --i) inv[i] = inv[i + 1] * (i + 1ll) % MOD;
}
int main(){
freopen("dagIV.in","r",stdin);
freopen("dagIV.out","w",stdout);
cin >> N; init();
for(int i = 1 ; i <= N ; ++i) F[i] = (MOD + ((i - 1) & 1 ? 1ll : -1ll) * inv[i] * poww(poww(2 , ch2(i)) , MOD - 2) % MOD) % MOD;
F[0] = 1; getInv(F , G , N + 1);
for(int i = 1 ; i <= N ; ++i)
G[i] = 1ll * G[i] * poww(2 , ch2(i)) % MOD;
getLn(G , ans , N + 1);
cout << 1ll * ans[N] * jc[N] % MOD;
return 0;
}
有标号的强连通图计数 I
感觉比上面的难不少但是评级却更低是什么鬼
一个任意的有向图在缩点时候都可以得到一个DAG,那么我们可以仍然考虑DAG计数I中的做法,即枚举缩点之后的图中出度为\(0\)的点由哪些点构成。但是值得注意的一件事情是在DAG计数I中,容斥系数与出度为\(0\)的点数相关,那么在强连通图计数中,这个容斥系数应该与选择的点在缩点之后构成的强连通分量的个数相关,相比于DAG计数来说这个是最为棘手的。
考虑设\(f_i\)表示\(i\)个点的强连通图数量,$g_i = \sum\limits_{j=1}^i (-1)^{j-1} \times $$i\(个点构成\)j\(个强连通分量的方案数,\)h_i = 2^{i(i-1)}\(表示\)i\(个点的有向图数量。不难发现\)g_i$就是把容斥系数和方案数放在了一起。
那么枚举缩点之后出度为\(0\)的强连通分量由哪些点构成,可以得到转移式:\(f_i = h_i - \sum\limits_{j=1}^i \binom{i}{j} h_{i-j} g_{j} 2^{j(i-j)} + f_i\)。值得注意的是最后加上的\(f_i\),这是因为当\(j=i\)时,\(g_i\)中包含了\(i\)个点构成同一个强连通分量的方案数,所以要把它补回来。
由上面的式子变形一下就可以得到\(g_i\)的转移式:\(g_i = h_i - \sum\limits_{j=1}^{i-1} \binom{i}{j} h_{i-j} g_{j} 2^{j(i-j)}\)。
然后考虑\(f\)和\(g\)的关系。按照上面的定义,\(g_i\)表示的是\(i\)个点构成强连通分量的方案总和,其中奇数个强连通分量的方案贡献为\(1\),偶数个强连通分量的贡献为\(-1\)。那么我们考虑枚举\(1\)号点所在的强连通分量,可以得到转移式:\(g_i = f_i - \sum\limits_{j=1}^{i-1} f_j g_{i-j} \binom{i-1}{j-1}\),即\(f_i = g_i + \sum\limits_{j=1}^{i-1} f_j g_{i-j} \binom{i-1}{j-1}\)。
暴力求出\(f,g\),复杂度\(O(n^2)\)。
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
const int _ = 1003 , MOD = 10007;
int poww(long long a , long long b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD; b >>= 1;
}
return times;
}
int F[_] , G[_] , inv[_] , jc[_] , poww2[_ * _] , N;
void init(){
jc[0] = 1;
for(int i = 1 ; i <= N ; ++i) jc[i] = jc[i - 1] * i % MOD;
inv[N] = poww(jc[N] , MOD - 2);
for(int i = N - 1 ; i >= 0 ; --i) inv[i] = inv[i + 1] * (i + 1) % MOD;
poww2[0] = 1;
for(int i = 1 ; i <= N * N ; ++i)
poww2[i] = poww2[i - 1] * 2 % MOD;
}
int binom(int a , int b){return a < b ? 0 : jc[a] * inv[b] % MOD * inv[a - b] % MOD;}
int main(){
freopen("QAQ_strong_one.in","r",stdin);
freopen("QAQ_strong_one.out","w",stdout);
cin >> N; init();
for(int i = 1 ; i <= N ; ++i){
G[i] = poww2[i * (i - 1)];
for(int j = 1 ; j < i ; ++j)
G[i] = (G[i] - binom(i , j) * poww2[j * (i - j)] % MOD * poww2[(i - j) * (i - j - 1)] % MOD * G[j] % MOD + MOD) % MOD;
}
for(int i = 1 ; i <= N ; ++i){
F[i] = G[i];
for(int j = 1 ; j < i ; ++j)
F[i] = (F[i] + F[j] * G[i - j] % MOD * binom(i - 1 , j - 1)) % MOD;
}
cout << F[N];
return 0;
}
有标号的强连通图计数 II
第一部分:多项式优化求\(g\)。和DAG计数II差不多,推一下式子可以得到\(\frac{g_n}{n!2^\binom{n}{2}} = \frac{h_n}{n!2^\binom{n}{2}} - \sum\limits_{j=1}^{n-1} \frac{h_{n-j}}{(n-j)! 2^\binom{n-j}{2}} \frac{g_j}{j!2^\binom{j}{2}}\),仍然是多项式求逆,仍然需要注意边界。
第二部分:多项式优化求\(f\)。基本思路和DAG计数IV是一样的,有拆式子然后多项式求逆的方法,也可以考虑性质然后多项式Ln解决。
多项式Ln代码
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
const int _ = (1 << 18) + 7 , MOD = 998244353;
int poww(long long a , long long b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD; b >>= 1;
}
return times;
}
namespace poly{
const int G = 3 , INV = 332748118;
int dir[_] , need , invnd , A[_] , B[_] , C[_];
void init(int x){
need = 1;
while(need < x) need <<= 1;
invnd = poww(need , MOD - 2);
for(int i = 1 ; i < need ; ++i)
dir[i] = (dir[i >> 1] >> 1) | (i & 1 ? need >> 1 : 0);
}
void NTT(int *arr , int tp){
for(int i = 1 ; i < need ; ++i)
if(i < dir[i])
arr[i] ^= arr[dir[i]] ^= arr[i] ^= arr[dir[i]];
for(int i = 1 ; i < need ; i <<= 1){
int wn = poww(tp == 1 ? G : INV , MOD / i / 2);
for(int j = 0 ; j < need ; j += i << 1){
long long w = 1;
for(int k = 0 ; k < i ; ++k , w = w * wn % MOD){
int x = arr[j + k] , y = arr[i + j + k] * w % MOD;
arr[j + k] = x + y >= MOD ? x + y - MOD : x + y;
arr[i + j + k] = x < y ? x + MOD - y : x - y;
}
}
}
if(tp != 1)
for(int i = 0 ; i < need ; ++i)
arr[i] = 1ll * arr[i] * invnd % MOD;
}
#define clr(x) memset(x , 0 , sizeof(int) * need)
void getInv(int *a , int *b , int len){
if(len == 1){b[0] = poww(a[0] , MOD - 2); return;}
getInv(a , b , ((len + 1) >> 1));
memcpy(A , a , sizeof(int) * len); memcpy(B , b , sizeof(int) * len);
init(len * 2 + 3); NTT(A , 1); NTT(B , 1);
for(int i = 0 ; i < need ; ++i) A[i] = 1ll * A[i] * B[i] % MOD * B[i] % MOD;
NTT(A , -1);
for(int i = 0 ; i < len ; ++i)
b[i] = (2ll * b[i] - A[i] + MOD) % MOD;
clr(A); clr(B);
}
void getDis(int *a , int *b , int len){
for(int i = 0 ; i < len - 1 ; ++i)
b[i] = a[i + 1] * (i + 1ll) % MOD;
b[len - 1] = 0;
}
void getInt(int *a , int *b , int len){
for(int i = 1 ; i <= len ; ++i)
b[i] = 1ll * a[i - 1] * poww(i , MOD - 2) % MOD;
}
void getLn(int *a , int *b , int len){
getInv(a , C , len); getDis(a , A , len);
init(2 * len + 1); NTT(A , 1); NTT(C , 1);
for(int i = 0 ; i < need ; ++i)
A[i] = 1ll * A[i] * C[i] % MOD;
NTT(A , -1);
getInt(A , b , len - 1); clr(A); clr(C);
}
}
using poly::getInv; using poly::getLn;
#define ch2(x) (1ll * x * (x - 1) / 2)
int F[_] , W[_] , H[_] , inv[_] , jc[_] , N;
void init(){
jc[0] = 1;
for(int i = 1 ; i <= N ; ++i) jc[i] = 1ll * jc[i - 1] * i % MOD;
inv[N] = poww(jc[N] , MOD - 2);
for(int i = N - 1 ; i >= 0 ; --i) inv[i] = inv[i + 1] * (i + 1ll) % MOD;
}
int main(){
freopen("QAQ_strongly_two.in","r",stdin);
freopen("QAQ_strongly_two.out","w",stdout);
cin >> N; init();
for(int i = 1 ; i <= N ; ++i)
H[i] = 1ll * poww(2 , ch2(i)) * inv[i] % MOD;
H[0] = 1; getInv(H , W , N + 1); H[0] = 0;
poly::init(2 * N + 2); poly::NTT(H , 1); poly::NTT(W , 1);
for(int i = 0 ; i < poly::need ; ++i)
H[i] = 1ll * H[i] * W[i] % MOD;
poly::NTT(H , -1); H[0] = 1;
for(int i = 1 ; i <= N ; ++i)
H[i] = MOD - 1ll * H[i] * poww(2 , ch2(i)) % MOD;
getLn(H , F , N + 1);
cout << MOD - 1ll * F[N] * jc[N] % MOD;
return 0;
}
多项式求逆代码
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
const int _ = (1 << 18) + 7 , MOD = 998244353;
int poww(long long a , long long b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD; b >>= 1;
}
return times;
}
namespace poly{
const int G = 3 , INV = 332748118;
int dir[_] , need , invnd , A[_] , B[_] , C[_];
void init(int x){
need = 1;
while(need < x) need <<= 1;
invnd = poww(need , MOD - 2);
for(int i = 1 ; i < need ; ++i)
dir[i] = (dir[i >> 1] >> 1) | (i & 1 ? need >> 1 : 0);
}
void NTT(int *arr , int tp){
for(int i = 1 ; i < need ; ++i)
if(i < dir[i])
arr[i] ^= arr[dir[i]] ^= arr[i] ^= arr[dir[i]];
for(int i = 1 ; i < need ; i <<= 1){
int wn = poww(tp == 1 ? G : INV , MOD / i / 2);
for(int j = 0 ; j < need ; j += i << 1){
long long w = 1;
for(int k = 0 ; k < i ; ++k , w = w * wn % MOD){
int x = arr[j + k] , y = arr[i + j + k] * w % MOD;
arr[j + k] = x + y >= MOD ? x + y - MOD : x + y;
arr[i + j + k] = x < y ? x + MOD - y : x - y;
}
}
}
if(tp != 1)
for(int i = 0 ; i < need ; ++i)
arr[i] = 1ll * arr[i] * invnd % MOD;
}
#define clr(x) memset(x , 0 , sizeof(int) * need)
void getInv(int *a , int *b , int len){
if(len == 1){b[0] = poww(a[0] , MOD - 2); return;}
getInv(a , b , ((len + 1) >> 1));
memcpy(A , a , sizeof(int) * len); memcpy(B , b , sizeof(int) * len);
init(len * 2 + 3); NTT(A , 1); NTT(B , 1);
for(int i = 0 ; i < need ; ++i) A[i] = 1ll * A[i] * B[i] % MOD * B[i] % MOD;
NTT(A , -1);
for(int i = 0 ; i < len ; ++i)
b[i] = (2ll * b[i] - A[i] + MOD) % MOD;
clr(A); clr(B);
}
}
using poly::getInv;
#define ch2(x) (1ll * x * (x - 1) / 2)
int F[_] , W[_] , H[_] , inv[_] , jc[_] , N;
void init(){
jc[0] = 1;
for(int i = 1 ; i <= N ; ++i) jc[i] = 1ll * jc[i - 1] * i % MOD;
inv[N] = poww(jc[N] , MOD - 2);
for(int i = N - 1 ; i >= 0 ; --i) inv[i] = inv[i + 1] * (i + 1ll) % MOD;
}
int main(){
freopen("QAQ_strongly_two.in","r",stdin);
freopen("QAQ_strongly_two.out","w",stdout);
cin >> N; init();
for(int i = 1 ; i <= N ; ++i)
H[i] = 1ll * poww(2 , ch2(i)) * inv[i] % MOD;
H[0] = 1; getInv(H , W , N + 1); H[0] = 0;
poly::init(2 * N + 2); poly::NTT(H , 1); poly::NTT(W , 1);
for(int i = 0 ; i < poly::need ; ++i)
H[i] = 1ll * H[i] * W[i] % MOD;
poly::NTT(H , -1); H[0] = 1;
for(int i = 1 ; i <= N ; ++i)
H[i] = MOD - 1ll * H[i] * poww(2 , ch2(i)) % MOD;
getInv(H , F , N + 1); H[0] = 0;
for(int i = 1 ; i <= N ; ++i)
H[i] = 1ll * (MOD - H[i]) * i % MOD;
poly::init(2 * N + 2); poly::NTT(H , 1); poly::NTT(F , 1);
for(int i = 0 ; i < poly::need ; ++i)
H[i] = 1ll * H[i] * F[i] % MOD;
poly::NTT(H , -1);
cout << 1ll * H[N] * jc[N - 1] % MOD;
return 0;
}
COGS 有标号的DAG/强连通图计数的更多相关文章
- 有标号的DAG图计数1~4
前言 我什么都不会,菜的被关了起来. 有标号的DAG图I Solution 考虑递推,设\(f_i\)表示i个点的答案,显然这个东西是可以组合数+容斥递推? 设\(f_i\)表示i个点的答案,我们考虑 ...
- 【合集】有标号的DAG图计数(合集)
[合集]有标号的DAG图计数(合集) orz 1tst [题解]有标号的DAG计数1 [题解]有标号的DAG计数2 [题解]有标号的DAG计数3 [题解]有标号的DAG计数4
- COGS 2396 2397 [HZOI 2015]有标号的强连通图计数
题意:求n个点有向图其中SCC是一个的方案数 考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做.(但是这里不能用Ln,因为推不出来) 设$f_n$为答案, $g_n$为n个点的有向图, ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
- 【题解】有标号的DAG计数2
[HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...
随机推荐
- 漏斗分析(Funnel Analysis)
什么是漏斗分析? 简单来讲,就是抽象出某个流程,观察流程中每一步的转化与流失. 漏斗的三个要素: 时间:特指漏斗的转化周期,即为完成每一层漏斗所需时间的集合 节点:每一层漏斗,就是一个节点 流量:就是 ...
- Spark-Streaming kafka count 案例
Streaming 统计来自 kafka 的数据,这里涉及到的比较,kafka 的数据是使用从 flume 获取到的,这里相当于一个小的案例. 1. 启动 kafka Spark-Streaming ...
- 第08组 团队Git现场编程实战
一.组员职责分工 算法:庄锡荣,林鑫灿 UI:许煌标,蔡峰,林晓锋,陈珊珊,侯雅倩,吴珂雨 博客:陈珊珊,王钟贤 二.github提交日志 三.程序运行截图 运行中爬取到的部分信息 数据库中的部分信息 ...
- join 分割数组
返回一个字符串.该字符串是通过把 arrayObject 的每个元素转换为字符串,然后把这些字符串连接起来,在两个元素之间插入 separator 字符串而生成的. separator可以传可以传,不 ...
- Hotspot研究-工程结构
- CTF SQL注入
目录 一.宽字节注入 二.基于约束的注入 三.报错注入 四.时间盲注 五.bool盲注 六.order by的注入 六.INSERT.UPDATE.DELETE相关的注入 七.堆叠注入 八.常用绕过 ...
- __gcd-最大公约数
__gcd-最大公约数 最大公约数(greatest common divisor,简写为gcd:或highest common factor,简写为hcf) __gcd(x,y)是algorithm ...
- MySQL导入csv文件内容到Table及数据库的自增主键设置
写在前面 目的是测试将csv文件内容导入到表中, 同时记录一下自增主键的设置. 测试采用MySQL8.0. 新建表customer_info如下, 未设置主键. 修改上表, 添加主键id, 并设置为自 ...
- python import 上级目录(转)
python import 上级目录 有时候我们可能需要import另一个路径下的python文件,例如下面这个目录结构,我们想要在_train.py里import在networks目录下的_lst ...
- Python3基础 函数 __name__ 得到引用所指向的真正名字
Python : 3.7.3 OS : Ubuntu 18.04.2 LTS IDE : pycharm-community-2019.1.3 ...