首先进行数据预处理,需要生成.tsv、.jpg文件

import matplotlib.pyplot as plt
import numpy as np
import os
from tensorflow.examples.tutorials.mnist import input_data LOG_DIR = 'log'
SPRITE_FILE = 'mnist_sprite.jpg'
META_FIEL = "mnist_meta.tsv" # 存储索引和标签 def create_sprite_image(images):
if isinstance(images, list):
images = np.array(images)
img_h = images.shape[1]
img_w = images.shape[2]
n_plots = int(np.ceil(np.sqrt(images.shape[0])))
spriteimage = np.ones((img_h * n_plots, img_w * n_plots)) for i in range(n_plots):
for j in range(n_plots):
this_filter = i * n_plots + j
if this_filter < images.shape[0]: # 个数
this_img = images[this_filter]
spriteimage[i * img_h:(i + 1) * img_h,
j * img_w:(j + 1) * img_w] = this_img return spriteimage mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) to_visualise = 1 - np.reshape(mnist.test.images, (-1, 28, 28)) # 取反
sprite_image = create_sprite_image(to_visualise) path_for_mnist_sprites = os.path.join(LOG_DIR, SPRITE_FILE)
plt.imsave(path_for_mnist_sprites, sprite_image, cmap='gray')
plt.imshow(sprite_image, cmap='gray') path_for_mnist_metadata = os.path.join(LOG_DIR, META_FIEL) # 下面存储的东西很关键
with open(path_for_mnist_metadata, 'w') as f:
f.write("Index\tLabel\n")
for index, label in enumerate(mnist.test.labels): # 上边是(Index, label)是
f.write("%d\t%d\n" % (index, label))

mnist_inference:

import tensorflow as tf

INPUT_NODE = 784
LAYER1_NODE = 500
OUTPUT_NODE = 10 def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer is not None:
tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
# 只有当训练和测试在一个程序时,才用reuse
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2

projector_MNIST

import tensorflow as tf
import mnist_inference
import os from tensorflow.contrib.tensorboard.plugins import projector # 加载用于生成PROJECTOR日志的帮助函数
from tensorflow.examples.tutorials.mnist import input_data BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 10000
MOVING_AVERAGE_DECAY = 0.99 LOG_DIR = 'log'
SPRITE_FILE = 'mnist_sprite.jpg'
META_FIEL = "mnist_meta.tsv"
TENSOR_NAME = "FINAL_LOGITS" def train(mnist): # 返回的是训练的数据,每行代表一个标签
# 输入数据的命名空间。
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False)
9
# 处理滑动平均的命名空间。
with tf.name_scope("moving_average"):
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 计算损失函数的命名空间。
with tf.name_scope("loss_function"):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) # 定义学习率、优化方法及每一轮执行训练的操作的命名空间。
with tf.name_scope("train_step"):
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 训练模型。
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys}) if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (i, loss_value))
final_result = sess.run(y, feed_dict={x: mnist.test.images}) return final_result def visualisation(final_result): # 这里才是正儿八经的可视化
y = tf.Variable(final_result, name=TENSOR_NAME) # 用final_result对y初始化
summary_writer = tf.summary.FileWriter(LOG_DIR) config = projector.ProjectorConfig() # 通过projector.ProjectorConfig来帮助生成日志文件
embedding = config.embeddings.add() # 增加一个需要可视化的embedding结果
embedding.tensor_name = y.name # 指定这个embedding结果对应的Tensorflow变量名称,按照它来分类,y的结果时0-9 # Specify where you find the metadata
embedding.metadata_path = META_FIEL # 注意这里也要.tsv文件 # Specify where you find the sprite (we will create this later)
embedding.sprite.image_path = SPRITE_FILE # 这里同时也要.jpg文件
embedding.sprite.single_image_dim.extend([28, 28]) # Say that you want to visualise the embeddings
projector.visualize_embeddings(summary_writer, config) # 这一步是写入 sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.save(sess, os.path.join(LOG_DIR, "model"), TRAINING_STEPS) summary_writer.close() def main(argv=None):
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
final_result = train(mnist)
visualisation(final_result) if __name__ == '__main__':
main()

Tensorflow细节-P312-PROJECTOR的更多相关文章

  1. Tensorflow细节-P319-使用GPU基本的操作

    如果什么都不加,直接运行装了GPU的Tensorflow,结果是这样子的 import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0], shape= ...

  2. Tensorflow细节-P309-高维向量可视化

    import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import os from tensorflow ...

  3. Tensorflow细节-P309-监控指标可视化

    注意下面一个点就ok了 with tf.name_scope('input_reshape'): # 注意看这里,图片的生成 image_shaped_input = tf.reshape(x, [- ...

  4. Tensorflow细节-P290-命名空间与tensorboard上的节点

    讲解几个重点知识 1.对于tf.get_variable()中的reuse,意思是,如果有名字一模一样的变量,则对这个变量继续使用,如果没有名字一模一样的变量,则创建这个变量 2.options=ru ...

  5. Tensorflow细节-Tensorboard可视化-简介

    先搞点基础的 注意注意注意,这里虽然很基础,但是代码应注意: 1.从writer开始后边就错开了 2.writer后可以直接接writer.close,也就是说可以: writer = tf.summ ...

  6. Tensorflow细节-P202-数据集的高层操作

    本节是对上节的补充 import tempfile import tensorflow as tf # 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据. tr ...

  7. Tensorflow细节-P199-数据集

    数据集的基本使用方法 import tempfile import tensorflow as tf input_data = [1, 2, 3, 5, 8] # 这不是列表吗,为什么书里叫数组 da ...

  8. Tensorflow细节-P196-输入数据处理框架

    要点 1.filename_queue = tf.train.string_input_producer(files, shuffle=False)表示创建一个队列来维护列表 2.min_after_ ...

  9. Tensorflow细节-P194-组合训练数据

    import tensorflow as tf files = tf.train.match_filenames_once("data.tfrecords-*") filename ...

随机推荐

  1. VM配置Centos(第十三步分区设置)

    1.点击开启此虚拟机之后,选择第一个 (注意:如果鼠标不显示出来,按alt+ctrl键) 2.然后选择skip跳过检测,如果选择了ok就会有很长时间的检测 3.然后选择NEXT 4.选择中文,然后点击 ...

  2. Python之路【第十二篇】:Python面向对象高级

    一.反射 1 什么是反射 反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问.检测和修改它本身状态或行为的一种能力(自省).这一概念的提出很快引发了计算机科学领域关于应用反射性的研究 ...

  3. Windows10下QT5.13.2安装mingw64/MYSQL8.0驱动

    开始之前,先将编译器的路径添加到系统环境变量. 我的QT所以sql驱动是在下面这个目录中(大家在自己Qt的安装目录找到对应的文件夹就行,下面的路径也是如此), E:\qt\5.13.2\mingw73 ...

  4. 3、Linux目录操作

    1.目录操作概述 2.ls显示目录内容 命令名称:ls 命令英文原意:list 命令所在路径:/bin/ls 执行权限:所有用户 功能描述:显示目录文件 ls  -a    显示目录下的所有文件(包括 ...

  5. Spring-Cloud之Spring-Boot框架-1

    一.Spring Boot 是由 Pivotal 团队开发的 Spring 框架,采用了生产就绪的观点 ,旨在简化配置,致力于快速开发. Spring Boot 框架提供了自动装配和起步依赖,使开发人 ...

  6. flutter_screenutil

    import 'package:flutter/material.dart'; import 'package:flutter_screenutil/flutter_screenutil.dart'; ...

  7. 基于webpack的前端工程化开发解决方案探索(三):webpack-dev-server

    前两篇中我们使用webpack完成了静态资源(css/js/img)等自动写入HTML模板中,同时还可以为静态资源添加hash版本号,既满足了我们对于静态资源的打包要求,同时又无需开发人员介入打包过程 ...

  8. ioremap

    将一个IO地址空间映射到内核的虚拟地址空间上 物理地址 CPU地址总线传来的地址,由硬件电路控制其具体含义.物理地址中很大一部分是留给内存条中内存的,但也常被映射到其他存储器上(如显存.bios等) ...

  9. 嵌入式应用开发第四阶段-基于rk3399的视频监控系统

    一.需求分析 伴随着嵌入式技术.图像处理技术和无线网络传输技术的发展,传统模拟视频监控系统和基于PC的远程视频监控系统由于自身的不足,已经无法满足现代社会应用中不断涌现出来的新需求,于是基于嵌入式技术 ...

  10. MySQL Percona Toolkit--pt-osc学习

    工作流程 1.检查更改表是否有主键或唯一索引,是否有触发器 2.检查修改表的表结构,创建一个临时表,在新表上执行ALTER TABLE语句 3.在源表上创建三个触发器分别对于INSERT UPDATE ...