首先进行数据预处理,需要生成.tsv、.jpg文件

  1. import matplotlib.pyplot as plt
  2. import numpy as np
  3. import os
  4. from tensorflow.examples.tutorials.mnist import input_data
  5. LOG_DIR = 'log'
  6. SPRITE_FILE = 'mnist_sprite.jpg'
  7. META_FIEL = "mnist_meta.tsv" # 存储索引和标签
  8. def create_sprite_image(images):
  9. if isinstance(images, list):
  10. images = np.array(images)
  11. img_h = images.shape[1]
  12. img_w = images.shape[2]
  13. n_plots = int(np.ceil(np.sqrt(images.shape[0])))
  14. spriteimage = np.ones((img_h * n_plots, img_w * n_plots))
  15. for i in range(n_plots):
  16. for j in range(n_plots):
  17. this_filter = i * n_plots + j
  18. if this_filter < images.shape[0]: # 个数
  19. this_img = images[this_filter]
  20. spriteimage[i * img_h:(i + 1) * img_h,
  21. j * img_w:(j + 1) * img_w] = this_img
  22. return spriteimage
  23. mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)
  24. to_visualise = 1 - np.reshape(mnist.test.images, (-1, 28, 28)) # 取反
  25. sprite_image = create_sprite_image(to_visualise)
  26. path_for_mnist_sprites = os.path.join(LOG_DIR, SPRITE_FILE)
  27. plt.imsave(path_for_mnist_sprites, sprite_image, cmap='gray')
  28. plt.imshow(sprite_image, cmap='gray')
  29. path_for_mnist_metadata = os.path.join(LOG_DIR, META_FIEL) # 下面存储的东西很关键
  30. with open(path_for_mnist_metadata, 'w') as f:
  31. f.write("Index\tLabel\n")
  32. for index, label in enumerate(mnist.test.labels): # 上边是(Index, label)是
  33. f.write("%d\t%d\n" % (index, label))

mnist_inference:

  1. import tensorflow as tf
  2. INPUT_NODE = 784
  3. LAYER1_NODE = 500
  4. OUTPUT_NODE = 10
  5. def get_weight_variable(shape, regularizer):
  6. weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
  7. if regularizer is not None:
  8. tf.add_to_collection('losses', regularizer(weights))
  9. return weights
  10. def inference(input_tensor, regularizer):
  11. # 只有当训练和测试在一个程序时,才用reuse
  12. with tf.variable_scope('layer1'):
  13. weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
  14. biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
  15. layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
  16. with tf.variable_scope('layer2'):
  17. weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
  18. biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
  19. layer2 = tf.matmul(layer1, weights) + biases
  20. return layer2

projector_MNIST

  1. import tensorflow as tf
  2. import mnist_inference
  3. import os
  4. from tensorflow.contrib.tensorboard.plugins import projector # 加载用于生成PROJECTOR日志的帮助函数
  5. from tensorflow.examples.tutorials.mnist import input_data
  6. BATCH_SIZE = 100
  7. LEARNING_RATE_BASE = 0.8
  8. LEARNING_RATE_DECAY = 0.99
  9. REGULARIZATION_RATE = 0.0001
  10. TRAINING_STEPS = 10000
  11. MOVING_AVERAGE_DECAY = 0.99
  12. LOG_DIR = 'log'
  13. SPRITE_FILE = 'mnist_sprite.jpg'
  14. META_FIEL = "mnist_meta.tsv"
  15. TENSOR_NAME = "FINAL_LOGITS"
  16. def train(mnist): # 返回的是训练的数据,每行代表一个标签
  17. # 输入数据的命名空间。
  18. with tf.name_scope('input'):
  19. x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
  20. y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
  21. regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
  22. y = mnist_inference.inference(x, regularizer)
  23. global_step = tf.Variable(0, trainable=False)
  24. 9
  25. # 处理滑动平均的命名空间。
  26. with tf.name_scope("moving_average"):
  27. variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
  28. variables_averages_op = variable_averages.apply(tf.trainable_variables())
  29. # 计算损失函数的命名空间。
  30. with tf.name_scope("loss_function"):
  31. cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
  32. cross_entropy_mean = tf.reduce_mean(cross_entropy)
  33. loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
  34. # 定义学习率、优化方法及每一轮执行训练的操作的命名空间。
  35. with tf.name_scope("train_step"):
  36. learning_rate = tf.train.exponential_decay(
  37. LEARNING_RATE_BASE,
  38. global_step,
  39. mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
  40. staircase=True)
  41. train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
  42. with tf.control_dependencies([train_step, variables_averages_op]):
  43. train_op = tf.no_op(name='train')
  44. # 训练模型。
  45. with tf.Session() as sess:
  46. tf.global_variables_initializer().run()
  47. for i in range(TRAINING_STEPS):
  48. xs, ys = mnist.train.next_batch(BATCH_SIZE)
  49. _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
  50. if i % 1000 == 0:
  51. print("After %d training step(s), loss on training batch is %g." % (i, loss_value))
  52. final_result = sess.run(y, feed_dict={x: mnist.test.images})
  53. return final_result
  54. def visualisation(final_result): # 这里才是正儿八经的可视化
  55. y = tf.Variable(final_result, name=TENSOR_NAME) # 用final_result对y初始化
  56. summary_writer = tf.summary.FileWriter(LOG_DIR)
  57. config = projector.ProjectorConfig() # 通过projector.ProjectorConfig来帮助生成日志文件
  58. embedding = config.embeddings.add() # 增加一个需要可视化的embedding结果
  59. embedding.tensor_name = y.name # 指定这个embedding结果对应的Tensorflow变量名称,按照它来分类,y的结果时0-9
  60. # Specify where you find the metadata
  61. embedding.metadata_path = META_FIEL # 注意这里也要.tsv文件
  62. # Specify where you find the sprite (we will create this later)
  63. embedding.sprite.image_path = SPRITE_FILE # 这里同时也要.jpg文件
  64. embedding.sprite.single_image_dim.extend([28, 28])
  65. # Say that you want to visualise the embeddings
  66. projector.visualize_embeddings(summary_writer, config) # 这一步是写入
  67. sess = tf.InteractiveSession()
  68. sess.run(tf.global_variables_initializer())
  69. saver = tf.train.Saver()
  70. saver.save(sess, os.path.join(LOG_DIR, "model"), TRAINING_STEPS)
  71. summary_writer.close()
  72. def main(argv=None):
  73. mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
  74. final_result = train(mnist)
  75. visualisation(final_result)
  76. if __name__ == '__main__':
  77. main()

Tensorflow细节-P312-PROJECTOR的更多相关文章

  1. Tensorflow细节-P319-使用GPU基本的操作

    如果什么都不加,直接运行装了GPU的Tensorflow,结果是这样子的 import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0], shape= ...

  2. Tensorflow细节-P309-高维向量可视化

    import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import os from tensorflow ...

  3. Tensorflow细节-P309-监控指标可视化

    注意下面一个点就ok了 with tf.name_scope('input_reshape'): # 注意看这里,图片的生成 image_shaped_input = tf.reshape(x, [- ...

  4. Tensorflow细节-P290-命名空间与tensorboard上的节点

    讲解几个重点知识 1.对于tf.get_variable()中的reuse,意思是,如果有名字一模一样的变量,则对这个变量继续使用,如果没有名字一模一样的变量,则创建这个变量 2.options=ru ...

  5. Tensorflow细节-Tensorboard可视化-简介

    先搞点基础的 注意注意注意,这里虽然很基础,但是代码应注意: 1.从writer开始后边就错开了 2.writer后可以直接接writer.close,也就是说可以: writer = tf.summ ...

  6. Tensorflow细节-P202-数据集的高层操作

    本节是对上节的补充 import tempfile import tensorflow as tf # 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据. tr ...

  7. Tensorflow细节-P199-数据集

    数据集的基本使用方法 import tempfile import tensorflow as tf input_data = [1, 2, 3, 5, 8] # 这不是列表吗,为什么书里叫数组 da ...

  8. Tensorflow细节-P196-输入数据处理框架

    要点 1.filename_queue = tf.train.string_input_producer(files, shuffle=False)表示创建一个队列来维护列表 2.min_after_ ...

  9. Tensorflow细节-P194-组合训练数据

    import tensorflow as tf files = tf.train.match_filenames_once("data.tfrecords-*") filename ...

随机推荐

  1. opencv之重映射

    好久没写呆码了 今天发个重映射 #include "opencv2/video/tracking.hpp" #include "opencv2/imgproc/imgpr ...

  2. Python之虚拟环境virtualenv、pipreqs生成项目依赖第三方包

    virtualenv简介 含义: virtual:虚拟,env:environment环境的简写,所以virtualenv就是虚拟环境,顾名思义,就是虚拟出来的一个新环境,比如我们使用的虚拟机.doc ...

  3. Java的含义

    Java是一种广泛使用的计算机编程语言,拥有跨平台.面向对象.泛型编程的特性,广泛应用于企业级Web应用开发和移动应用开发. Java语言它不是软件,这里给各位初学者们详细解释一下.简单来说计算机语言 ...

  4. ELK学习笔记之使用curl命令操作elasticsearch

    0x00 _cat系列 _cat系列提供了一系列查询elasticsearch集群状态的接口.你可以通过执行curl -XGET localhost:9200/_cat 1. 获取所有_cat系列的操 ...

  5. go install -v github.com/gopherjs/gopherjs报错提示go cannot find package "golang.org/x/crypto/ssh/terminal" 解决方案

    1前言 方法一:go get 方法二: github clone 2 方法方法一:go get go get golang.org/x/crypto/ssh/terminal 但是这种方法容易被墙,出 ...

  6. AWS成本估算的相关小工具

    1.AWS-partner :云势数据做的在线小工具,有微信版本可以使用,但是涉及的服务很少,更新慢,型号缺,界面不友好.不是很理想,连接如下:     https://www.goclouds.cn ...

  7. 【JVM】记录一次线上SWAP偏高告警的故障分析过程

    近期遇到一个堆外内存导致swap飙高的问题,这类问题比较罕见,因此将整个排查过程记录下来了 现象描述 最近1周线上服务器时不时出现swap报警(swap超过内存10%时触发报警,内存是4G,因此swa ...

  8. angular js根据json文件动态生成路由状态

    项目上有一个新需求,就是需要根据json文件动态生成路由状态,查阅了一下资料,现在总结一下发出来: 首先项目用到的是angular的UI-路由,所以必须引入angular.js和angular-ui- ...

  9. PM2 对 Node 项目进行线上部署与配置

    pm2 是一个带有负载均衡功能的 Node 应用的进程管理器. 1. pm2 主要特点 内建负载均衡(使用Node cluster 集群模块) 保持后台运行 进程守护,系统崩溃后自动重启 启动多进程, ...

  10. Python实现柱状图【数字精准展示,使用不同颜色】

    一.简介 主要使用matplotlib基于python的可视化组件实现. 二.代码实现 # -*- coding: utf-8 -*- """ Created on Mo ...