Tensorflow细节-P312-PROJECTOR
首先进行数据预处理,需要生成.tsv、.jpg文件
import matplotlib.pyplot as plt
import numpy as np
import os
from tensorflow.examples.tutorials.mnist import input_data
LOG_DIR = 'log'
SPRITE_FILE = 'mnist_sprite.jpg'
META_FIEL = "mnist_meta.tsv" # 存储索引和标签
def create_sprite_image(images):
if isinstance(images, list):
images = np.array(images)
img_h = images.shape[1]
img_w = images.shape[2]
n_plots = int(np.ceil(np.sqrt(images.shape[0])))
spriteimage = np.ones((img_h * n_plots, img_w * n_plots))
for i in range(n_plots):
for j in range(n_plots):
this_filter = i * n_plots + j
if this_filter < images.shape[0]: # 个数
this_img = images[this_filter]
spriteimage[i * img_h:(i + 1) * img_h,
j * img_w:(j + 1) * img_w] = this_img
return spriteimage
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)
to_visualise = 1 - np.reshape(mnist.test.images, (-1, 28, 28)) # 取反
sprite_image = create_sprite_image(to_visualise)
path_for_mnist_sprites = os.path.join(LOG_DIR, SPRITE_FILE)
plt.imsave(path_for_mnist_sprites, sprite_image, cmap='gray')
plt.imshow(sprite_image, cmap='gray')
path_for_mnist_metadata = os.path.join(LOG_DIR, META_FIEL) # 下面存储的东西很关键
with open(path_for_mnist_metadata, 'w') as f:
f.write("Index\tLabel\n")
for index, label in enumerate(mnist.test.labels): # 上边是(Index, label)是
f.write("%d\t%d\n" % (index, label))
mnist_inference:
import tensorflow as tf
INPUT_NODE = 784
LAYER1_NODE = 500
OUTPUT_NODE = 10
def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer is not None:
tf.add_to_collection('losses', regularizer(weights))
return weights
def inference(input_tensor, regularizer):
# 只有当训练和测试在一个程序时,才用reuse
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2
projector_MNIST
import tensorflow as tf
import mnist_inference
import os
from tensorflow.contrib.tensorboard.plugins import projector # 加载用于生成PROJECTOR日志的帮助函数
from tensorflow.examples.tutorials.mnist import input_data
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 10000
MOVING_AVERAGE_DECAY = 0.99
LOG_DIR = 'log'
SPRITE_FILE = 'mnist_sprite.jpg'
META_FIEL = "mnist_meta.tsv"
TENSOR_NAME = "FINAL_LOGITS"
def train(mnist): # 返回的是训练的数据,每行代表一个标签
# 输入数据的命名空间。
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False)
9
# 处理滑动平均的命名空间。
with tf.name_scope("moving_average"):
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# 计算损失函数的命名空间。
with tf.name_scope("loss_function"):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
# 定义学习率、优化方法及每一轮执行训练的操作的命名空间。
with tf.name_scope("train_step"):
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
# 训练模型。
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (i, loss_value))
final_result = sess.run(y, feed_dict={x: mnist.test.images})
return final_result
def visualisation(final_result): # 这里才是正儿八经的可视化
y = tf.Variable(final_result, name=TENSOR_NAME) # 用final_result对y初始化
summary_writer = tf.summary.FileWriter(LOG_DIR)
config = projector.ProjectorConfig() # 通过projector.ProjectorConfig来帮助生成日志文件
embedding = config.embeddings.add() # 增加一个需要可视化的embedding结果
embedding.tensor_name = y.name # 指定这个embedding结果对应的Tensorflow变量名称,按照它来分类,y的结果时0-9
# Specify where you find the metadata
embedding.metadata_path = META_FIEL # 注意这里也要.tsv文件
# Specify where you find the sprite (we will create this later)
embedding.sprite.image_path = SPRITE_FILE # 这里同时也要.jpg文件
embedding.sprite.single_image_dim.extend([28, 28])
# Say that you want to visualise the embeddings
projector.visualize_embeddings(summary_writer, config) # 这一步是写入
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.save(sess, os.path.join(LOG_DIR, "model"), TRAINING_STEPS)
summary_writer.close()
def main(argv=None):
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
final_result = train(mnist)
visualisation(final_result)
if __name__ == '__main__':
main()
Tensorflow细节-P312-PROJECTOR的更多相关文章
- Tensorflow细节-P319-使用GPU基本的操作
如果什么都不加,直接运行装了GPU的Tensorflow,结果是这样子的 import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0], shape= ...
- Tensorflow细节-P309-高维向量可视化
import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import os from tensorflow ...
- Tensorflow细节-P309-监控指标可视化
注意下面一个点就ok了 with tf.name_scope('input_reshape'): # 注意看这里,图片的生成 image_shaped_input = tf.reshape(x, [- ...
- Tensorflow细节-P290-命名空间与tensorboard上的节点
讲解几个重点知识 1.对于tf.get_variable()中的reuse,意思是,如果有名字一模一样的变量,则对这个变量继续使用,如果没有名字一模一样的变量,则创建这个变量 2.options=ru ...
- Tensorflow细节-Tensorboard可视化-简介
先搞点基础的 注意注意注意,这里虽然很基础,但是代码应注意: 1.从writer开始后边就错开了 2.writer后可以直接接writer.close,也就是说可以: writer = tf.summ ...
- Tensorflow细节-P202-数据集的高层操作
本节是对上节的补充 import tempfile import tensorflow as tf # 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据. tr ...
- Tensorflow细节-P199-数据集
数据集的基本使用方法 import tempfile import tensorflow as tf input_data = [1, 2, 3, 5, 8] # 这不是列表吗,为什么书里叫数组 da ...
- Tensorflow细节-P196-输入数据处理框架
要点 1.filename_queue = tf.train.string_input_producer(files, shuffle=False)表示创建一个队列来维护列表 2.min_after_ ...
- Tensorflow细节-P194-组合训练数据
import tensorflow as tf files = tf.train.match_filenames_once("data.tfrecords-*") filename ...
随机推荐
- 不会前后端,用vps搭建个人博客(二)
<接上一篇> 四.添加网页内容 1.下载安装WordPress 输入以下命令: wget https://wordpress.org/latest.tar.gz 当然你也可以用浏览器进 ...
- golang(二)
基本结构和基本数据类型 指针 不像 Java 和 .NET,Go 语言为程序员提供了控制数据结构的指针的能力:但是,你不能进行指针运算.通过给予程序员基本内存布局,Go 语言允许你控制特定集合的数据结 ...
- Gradle 翻译 tips and recipes 使用技巧 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- 使用StringBuilder构建字符串
使用StringBuilder构建字符串确实可以提高效率,比“+”要高效不少.但使用时也有一些坑: 首先,我们指定一个StringBuilder,并设置其长度. StringBuilder build ...
- form表单提交数据给后台
1.完整登录示例 1. form表单往后端提交数据注意三点 1.所有获取用户输入标签都应该放在form表单里面 2.action属性控制往哪儿提交,method一般都是设置成post 3.提交按钮必须 ...
- EditPlus中文版 安装教程
EditPlus中文版安装教程 1.下载软件压缩包,解压即可.不需要安装,解压后打开“EditPlus中文版”文件夹(软件我会打包好,在文中的最低端找到即可下载:若链接失效了,请告知我一声,我会重新更 ...
- 小米手机安装Google框架
方法一 打开应用商店,搜索谷歌安装器下载即可. 方法二 搜索Gmail.Google+.Youtube等软件跳到豌豆荚,自动下载Google框架.
- kali之nmap
nmap简介 Nmap,也就是Network Mapper,最早是Linux下的网络扫描和嗅探工具包.可以扫描主机.端口.并且识别端口所对应的协议,以及猜测操作系统 Ping扫描(-sP参数) TCP ...
- 【夯实基础】- Integer.valueof()和Integer.parseInt()的区别
今天在看公司代码的时候,看到有人在将 String 转为 int 时,用到了Integer.parseInt(String s)方法,我一直用的是Integer.valueOf(String s)方法 ...
- CSS-服务器端字体笔记
服务器端字体 在CSS3中可以使用@font-face属性来利用服务器端字体. @font-face 属性的使用方法: @font-face{ font-family:webFont; src:ur ...