▶ 给定方阵 grid,其元素的值为 D0n-1,代表网格中该点处的高度。现在网格中开始积水,时刻 t 的时候所有值不大于 t 的格点被水淹没,当两个相邻格点(上下左右四个方向)的值都不超过 t 的时候我们称他们连通,即可以通过游泳到达,请问能将主对角两顶点((0, 0) 和 (n-1, n-1))连通的最小时刻是多少?例如 下图的最小连通时间为 16 。

  

● 自己的代码,22 ms,简单 BFS,普通队列

 class Solution
{
public:
int swimInWater(vector<vector<int>>& grid)//set a binary search to find a proper moment
{
const int n = grid.size();
int lp, rp, mp;
for (lp = max( * n - , max(grid[][], grid[n - ][n - ])) - , rp = n * n, mp = (lp + rp) / ; lp < rp && mp > lp; mp = (lp + rp) / )
{ // 时间最小是 2n-2,最大是 n^2-1
if (swim(grid, mp))
rp = mp;
else
lp = mp;
}
return rp;
}
bool swim(vector<vector<int>>& grid, int time)// swimming at the moment 'time', can I reach the point (n-1, n-1)?
{
const int n = grid.size();
vector<vector<bool>> table(n, vector<bool>(n, false));
queue<vector<int>> qq;
vector<int> temp;
int row, col;
for (qq.push({ , }), table[][] = true; !qq.empty();)
{
temp = qq.front(), qq.pop(), row = temp[], col = temp[];
if (row == n - && col == n - )
return true; if (row > && grid[row - ][col] <= time && !table[row - ][col])// up
qq.push({ row - , col }), table[row - ][col] = true;
if (col > && grid[row][col - ] <= time && !table[row][col - ])// left
qq.push({ row, col - }), table[row][col - ] = true;
if (row < n - && grid[row + ][col] <= time && !table[row + ][col])// down
qq.push({ row + , col }), table[row + ][col] = true;
if (col < n - && grid[row][col + ] <= time && !table[row][col + ])// right
qq.push({ row, col + }), table[row][col + ] = true;
}
return false;
}
};

● 大佬的代码,13 ms,DFS,注意这里使用了一个数组 dir 来决定搜索方向,比较有趣的用法

 class Solution
{
public:
int swimInWater(vector<vector<int>>& grid)
{
const int n = grid.size();
int lp, rp, mp;
for (lp = grid[][], rp = n * n - ; lp < rp;)
{
mp = lp + (rp - lp) / ;
if (valid(grid, mp))
rp = mp;
else
lp = mp + ;
}
return lp;
}
bool valid(vector<vector<int>>& grid, int waterHeight)
{
const int n = grid.size();
const vector<int> dir({ -, , , , - });
vector<vector<bool>> visited(n, vector<bool>(n, ));
return dfs(grid, visited, dir, waterHeight, , , n);
}
bool dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, vector<int>& dir, int waterHeight, int row, int col, int n)
{
int i, r, c;
visited[row][col] = true;
for (i = ; i < ; ++i)
{
r = row + dir[i], c = col + dir[i + ];
if (r >= && r < n && c >= && c < n && visited[r][c] == false && grid[r][c] <= waterHeight)
{
if (r == n - && c == n - )
return true;
if (dfs(grid, visited, dir, waterHeight, r, c, n))
return true;
}
}
return false;
}
};

● 大佬的代码,185 ms,DP + DFS,维护一个方阵 dp,理解为“沿着当前搜索路径能够到达某一格点的最小时刻”,初始假设 dp = [INT_MAX] ,即所有的格点都要在 INT_MAX 的时刻才能到达,深度优先遍历每个点,不断下降每个点的值(用该点原值和用于遍历的临时深度值作比较,两者都更新为他们的较小者)

 class Solution
{
public:
int swimInWater(vector<vector<int>> &grid)
{
const int m = grid.size();
vector<vector<int>> dp(m, vector<int>(m, INT_MAX));
helper(grid, , , , dp);
return dp[m - ][m - ];
}
void helper(vector<vector<int>> &grid, int row, int col, int deep, vector<vector<int>> &dp)
{
const int m = grid.size();
int i, x, y;
deep = max(deep, grid[row][col]);
if (dp[row][col] <= deep)
return;
for (dp[row][col] = deep, i = ; i < direction.size(); i++)
{
x = row + direction[i][], y = col + direction[i][];
if (x >= && x < m && y >= && y < m)
helper(grid, x, y, dp[row][col], dp);
}
}
vector<vector<int>> direction = { { -, },{ , },{ , },{ , - } };
};

● 大佬的代码,18 ms,DFS,优先队列,Dijkstra算法,相当于在搜索队列中,总是优先研究最小时刻的点

 class Solution
{
public:
int swimInWater(vector<vector<int>>& grid)
{
const int n = grid.size();
const vector<int> dir({ -, , , , - });
int ans, i, r, c;
priority_queue<vector<int>, vector<vector<int>>, greater<vector<int>>> pq;
vector<vector<bool>> visited(n, vector<bool>(n, false));
vector<int> cur;
for (visited[][] = true, ans = max(grid[][], grid[n - ][n - ]), pq.push({ ans, , }); !pq.empty();)
{
cur = pq.top(),pq.pop(), ans = max(ans, cur[]);
for (i = ; i < ; i++)
{
r = cur[] + dir[i], c = cur[] + dir[i + ];
if (r >= && r < n && c >= && c < n && visited[r][c] == false)
{
visited[r][c] = true;
if (r == n - && c == n - )
return ans;
pq.push({ grid[r][c], r, c });
}
}
}
return -;
}
};

● 大佬的代码,11 ms,使用那个 DP + DFS 解法的深度更新思路,把搜索方式换成 BFS

 class Solution
{
public:
int swimInWater(vector<vector<int>>& grid)
{
const int n = grid.size();
const vector<int> dir({ -, , , , - });
int ans, i, r, c;
vector<vector<bool>> visited(n, vector<bool>(n, false));
priority_queue<vector<int>, vector<vector<int>>, greater<vector<int>>> pq;
vector<int> cur;
queue<pair<int, int>> myq;
pair<int, int> p;
for (visited[][] = true, ans = max(grid[][], grid[n - ][n - ]), pq.push({ ans, , }); !pq.empty();)
{
cur = pq.top(), pq.pop(), ans = max(ans, cur[]);
for (myq.push({ cur[], cur[] }); !myq.empty();)
{
p = myq.front(), myq.pop();
if (p.first == n - && p.second == n - )
return ans;
for (i = ; i < ; ++i)
{
r = p.first + dir[i], c = p.second + dir[i + ];
if (r >= && r < n && c >= && c < n && visited[r][c] == )
{
visited[r][c] = true;
if (grid[r][c] <= ans)
myq.push({ r, c });
else
pq.push({ grid[r][c], r, c });
}
}
}
}
return -;
}
};

▶ 附上一个测试数据,答案为 266

 {
{, , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , ,, , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , },
{ , , , , , , , , , , , , , , , , , , , }
};

778. Swim in Rising Water的更多相关文章

  1. 【LeetCode】778. Swim in Rising Water 水位上升的泳池中游泳(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/swim-in- ...

  2. 【leetcode】778. Swim in Rising Water

    题目如下: 解题思路:本题题干中提到了一个非常重要的前提:"You can swim infinite distance in zero time",同时也给了一个干扰条件,那就是 ...

  3. LeetCode 778. Swim in Rising Water

    题目链接:https://leetcode.com/problems/swim-in-rising-water/ 题意:已知一个n*n的网格,初始时的位置为(0,0),目标位置为(n-1,n-1),且 ...

  4. [Swift]LeetCode778. 水位上升的泳池中游泳 | Swim in Rising Water

    On an N x N grid, each square grid[i][j]represents the elevation at that point (i,j). Now rain start ...

  5. [LeetCode] Swim in Rising Water 在上升的水中游泳

    On an N x N grid, each square grid[i][j] represents the elevation at that point (i,j). Now rain star ...

  6. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  7. 算法与数据结构基础 - 堆(Heap)和优先级队列(Priority queue)

    堆基础 堆(Heap)是具有这样性质的数据结构:1/完全二叉树 2/所有节点的值大于等于(或小于等于)子节点的值: 图片来源:这里 堆可以用数组存储,插入.删除会触发节点shift_down.shif ...

  8. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

  9. leetcode hard

    # Title Solution Acceptance Difficulty Frequency     4 Median of Two Sorted Arrays       27.2% Hard ...

随机推荐

  1. Linux 最好是禁用IPV6

    看着不爽, 还容易出事. 编辑文件 – /etc/sysctl.conf $ sudo gedit /etc/sysctl.conf 在文件的最后加入下面的行. # IPv6 disabled net ...

  2. EF大数据批量添加性能问题(续)

    昨天在园子里发了一篇如题的文章EF大数据批量添加性能问题,就引来一大堆的吐槽,我认为知识就应该这样分享出来,不然总以为自己很了不起:再说说昨天那篇文章,很多自认为很牛逼的人都评论说把SaveChang ...

  3. Mac下安装pcl-1.8.0

    更新,官方有Homebrew安装教程: http://pointclouds.org/documentation/tutorials/installing_homebrew.php#installin ...

  4. qt Cannot connect creator comm socket /tmp/qt_temp.S26613/stub-socket: No such

    Tool->Options->Environment->General 将terminal改为 xterm -e

  5. SGU 156 Strange Graph 欧拉回路,思路,汉密尔顿回路 难度:3

    http://acm.sgu.ru/problem.php?contest=0&problem=156 这道题有两种点 1. 度数>2 在团中的点,一定连接一个度数为2的点 2. 度数等 ...

  6. spring boot与spring mvc的区别

    Spring 框架就像一个家族,有众多衍生产品例如 boot.security.jpa等等.但他们的基础都是Spring 的 ioc和 aop ioc 提供了依赖注入的容器 aop ,解决了面向横切面 ...

  7. jquery MD5

    /** * jQuery MD5 hash algorithm function * * <code> * Calculate the md5 hash of a String * Str ...

  8. navicat链接mysql 8 出现 2015 authentication plugin 'caching_sha2_password' 错误

    使用mysql自带的 MySQL 8.0 Command Line Client - Unicode 登录, 然后使用命令: alter user 'root'@'localhost' identif ...

  9. Entity Framework 入门

    Entity Framework的全称是ADO.NET Entity Framework,是微软开发的基于ADO.NET的ORM(Object/Relational Mapping)框架. Entit ...

  10. BZOJ2140: 稳定婚姻(tarjan解决稳定婚姻问题)

    2140: 稳定婚姻 Time Limit: 2 Sec  Memory Limit: 259 MBSubmit: 1321  Solved: 652[Submit][Status][Discuss] ...