BZOJ3714 PA2014Kuglarz(最小生成树)
每次询问所获得的可以看做是两个前缀和的异或。我们只要知道任意前缀和的异或就可以得到答案了。并且显然地,如果知道了a和b的异或及a和c的异或,也就知道了b和c的异或。所以一次询问可以看做是在两点间连边,所要求的东西就是最小生成树了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
int n,fa[N];
long long ans=;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}edge[N*N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3714.in","r",stdin);
freopen("bzoj3714.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();int t=;
for (int i=;i<=n;i++)
for (int j=i;j<=n;j++)
t++,edge[t].x=i-,edge[t].y=j,edge[t].z=read();
sort(edge+,edge+t+);
for (int i=;i<=n;i++) fa[i]=i;
for (int i=;i<=t;i++)
if (find(edge[i].x)!=find(edge[i].y)) ans+=edge[i].z,fa[find(edge[i].x)]=find(edge[i].y);
cout<<ans;
return ;
}
BZOJ3714 PA2014Kuglarz(最小生成树)的更多相关文章
- 【BZOJ3714】Kuglarz(最小生成树)
[BZOJ3714]Kuglarz(最小生成树) 题面 BZOJ Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯 ...
- BZOJ3714 [PA2014]Kuglarz 【最小生成树】
题目链接 BZOJ3714 题解 我们如果知道了所有的数,同样就知道了所有的前缀和 相反,我们如果求出了所有前缀和,就知道了所有的数,二者是等价的 对于一个区间\([l,r]\)如果我们知道了前缀和\ ...
- 【BZOJ3714】[PA2014]Kuglarz 最小生成树
[BZOJ3714][PA2014]Kuglarz Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获 ...
- BZOJ3714 PA2014 Kuglarz 最小生成树
题目传送门 题意:有$N$个盒子,每个盒子中有$0$或$1$个球.现在你可以花费$c_{i,j}$的代价获得$i$到$j$的盒子中球的总数的奇偶性,求最少需要多少代价才能知道哪些盒子中有球.$N \l ...
- [bzoj3714] [PA2014] Kuglarz(最小生成树)
我们考虑这个题...思路比较神仙. 就是我们设\(sum[i]\)为前i个的区间里的情况,然后我们知道\(sum[j]\)的话,我们就可以知道\(j-i\)的情况了 所以说这很像最小生成树里面的约束条 ...
- 【kruscal】【最小生成树】【并查集扩展】bzoj3714 [PA2014]Kuglarz
ORZ:http://www.cnblogs.com/zrts/p/bzoj3714.html #include<cstdio> #include<algorithm> usi ...
- [BZOJ3714]Kuglarz(最小生成树)
Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费\(C_{i,j}\)元,魔术师就会告诉 ...
- 最小生成树(Kruskal算法-边集数组)
以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...
- 最小生成树计数 bzoj 1016
最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...
随机推荐
- struts2框架实例
一,Struts2框架介绍 它是一个View框架,对Servle进行了封装,使用核心过滤器对servlet进行了解耦,可以自动封装数据 核心是结果视图导航 二,程序实例 1.导入框架依赖包 2.注册框 ...
- 【SQLSERVER】索引的维护优化
一.索引的利弊 优点: 1.大大加快数据的检索速度: 2.创建唯一性索引,保证数据库表中每一行数据的唯一性: 3.加速表和表之间的连接: 4.在使用分组和排序子句进行数据检索时,可以显著减少查询中 ...
- 服务端调用接口API利器之HttpClient
前言 之前有介绍过HttpClient作为爬虫的简单使用,那么今天在简单的介绍一下它的另一个用途:在服务端调用接口API进行交互.之所以整理这个呢,是因为前几天在测试云之家待办消息接口的时候,有使用云 ...
- Python中的装饰器的使用及固定模式
装饰器的使用: 在不想修改函数的调用方式,但是想给函数添加内容的功能的时候使用 为什么使用装饰器: 软件实体应该是可扩展,而不可修改的.也就是说,对扩展是开放的,而对修改是封闭的. 因此,引出 ...
- Linux☞如何修改文件权限
修改文件/目录的权限:chmod 规则 文件/目录名 规则: 角色:u 自己人 user g 同组人 group o 其他人 other a 所有人 all 操作: + - 权限 ...
- JAVA Date、String、Calendar类型之间的转化
1.Calendar 转化 String //获取当前时间的具体情况,如年,月,日,week,date,分,秒等 Calendar calendat = Calendar.getInstance(); ...
- Kibana TypeError : Object #<GlobalState> has no method 'setDefaults'
在windows server中装完elasticsearch和kibana后,elasticsearch能正常访问(http://localhost:9200): 而访问kibana的地址(http ...
- Spring Task中的定时任务无法注入service的解决办法
1.问题 因一个项目(使用的是Spring+SpringMVC+hibernate框架)需要在spring task定时任务中调用数据库操作,在使用 @Autowired注入service时后台报错, ...
- 清空git缓存
git rm -r --cached .git add . git commit -m 'update .gitignore' 读了下git文档,才发现,这些东西其实很简单,很容易理解.cached其 ...
- “Hello World!”团队第九次会议
今天是我们团队“Hello World!”团队召开的第九次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 一.会议时间 20 ...