每次询问所获得的可以看做是两个前缀和的异或。我们只要知道任意前缀和的异或就可以得到答案了。并且显然地,如果知道了a和b的异或及a和c的异或,也就知道了b和c的异或。所以一次询问可以看做是在两点间连边,所要求的东西就是最小生成树了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
int n,fa[N];
long long ans=;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}edge[N*N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3714.in","r",stdin);
freopen("bzoj3714.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();int t=;
for (int i=;i<=n;i++)
for (int j=i;j<=n;j++)
t++,edge[t].x=i-,edge[t].y=j,edge[t].z=read();
sort(edge+,edge+t+);
for (int i=;i<=n;i++) fa[i]=i;
for (int i=;i<=t;i++)
if (find(edge[i].x)!=find(edge[i].y)) ans+=edge[i].z,fa[find(edge[i].x)]=find(edge[i].y);
cout<<ans;
return ;
}

BZOJ3714 PA2014Kuglarz(最小生成树)的更多相关文章

  1. 【BZOJ3714】Kuglarz(最小生成树)

    [BZOJ3714]Kuglarz(最小生成树) 题面 BZOJ Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯 ...

  2. BZOJ3714 [PA2014]Kuglarz 【最小生成树】

    题目链接 BZOJ3714 题解 我们如果知道了所有的数,同样就知道了所有的前缀和 相反,我们如果求出了所有前缀和,就知道了所有的数,二者是等价的 对于一个区间\([l,r]\)如果我们知道了前缀和\ ...

  3. 【BZOJ3714】[PA2014]Kuglarz 最小生成树

    [BZOJ3714][PA2014]Kuglarz Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获 ...

  4. BZOJ3714 PA2014 Kuglarz 最小生成树

    题目传送门 题意:有$N$个盒子,每个盒子中有$0$或$1$个球.现在你可以花费$c_{i,j}$的代价获得$i$到$j$的盒子中球的总数的奇偶性,求最少需要多少代价才能知道哪些盒子中有球.$N \l ...

  5. [bzoj3714] [PA2014] Kuglarz(最小生成树)

    我们考虑这个题...思路比较神仙. 就是我们设\(sum[i]\)为前i个的区间里的情况,然后我们知道\(sum[j]\)的话,我们就可以知道\(j-i\)的情况了 所以说这很像最小生成树里面的约束条 ...

  6. 【kruscal】【最小生成树】【并查集扩展】bzoj3714 [PA2014]Kuglarz

    ORZ:http://www.cnblogs.com/zrts/p/bzoj3714.html #include<cstdio> #include<algorithm> usi ...

  7. [BZOJ3714]Kuglarz(最小生成树)

    Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费\(C_{i,j}\)元,魔术师就会告诉 ...

  8. 最小生成树(Kruskal算法-边集数组)

    以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...

  9. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

随机推荐

  1. Oracle下如何设置 log_archive_dest

    一:存在 DB_RECOVERY_FILE_DEST 时,如何设置 LOG_ARCHIVE_DEST: SQL> archive log listデータベース・ログ・モード アーカイブ・モード自 ...

  2. PostgreSQL Streaming Replication的FATAL ERROR

    磨砺技术珠矶,践行数据之道,追求卓越价值回到上一级页面: PostgreSQL集群方案相关索引页     回到顶级页面:PostgreSQL索引页[作者 高健@博客园  luckyjackgao@gm ...

  3. js页面动态时间展示

    效果图: 具体代码 js代码 <script type="text/javascript"> var t = null; t = setTimeout(time,100 ...

  4. dsp6657的helloworld例程测试-第二篇-CFG文件

    1. 上一篇疑问,int StackTest()这个函数是怎么运行的,后来在.cfg文件找到了答案,.cfg包含丰富的信息,对于用惯C语言的,确实不太习惯 var Memory = xdc.useMo ...

  5. php-laravel中间件使用

    中间件使用 1.项目目录下cmd中php artisan make:middleware adminLogin,创建中间件 2.注册中间件(\Http\kernel.php) protected $r ...

  6. 2018百度之星开发者大赛-paddlepaddle学习

    前言 本次比赛赛题是进行人流密度的估计,因为之前看过很多人体姿态估计和目标检测的论文,隐约感觉到可以用到这次比赛上来,所以趁着现在时间比较多,赶紧报名参加了一下比赛,比赛规定用paddlepaddle ...

  7. jvm之GC知识点

    GCRoots:        虚拟机栈(栈帧中的局部变量表)引用的对象       方法区中静态属性引用的对象       方法去中常量引用的对象       本地方法栈中JNI(NATIVE方法) ...

  8. [leetcode]三数之和

    三数之和 给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组. 注意:答案中不可以包含重复 ...

  9. 华为笔试——C++括号匹配

    题目:括号匹配 题目来源:https://blog.csdn.net/lizi_stdio/article/details/76618908 题目介绍:输入一个字符串,里面可能包含“()”.“ [   ...

  10. [T-ARA][HUE]

    歌词来源:http://music.163.com/#/song?id=22704406 wa du seu mo geum to yo do ga tae 어딜가도 스페셜한게 없어 [eo-dil ...