每次询问所获得的可以看做是两个前缀和的异或。我们只要知道任意前缀和的异或就可以得到答案了。并且显然地,如果知道了a和b的异或及a和c的异或,也就知道了b和c的异或。所以一次询问可以看做是在两点间连边,所要求的东西就是最小生成树了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
int n,fa[N];
long long ans=;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}edge[N*N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3714.in","r",stdin);
freopen("bzoj3714.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();int t=;
for (int i=;i<=n;i++)
for (int j=i;j<=n;j++)
t++,edge[t].x=i-,edge[t].y=j,edge[t].z=read();
sort(edge+,edge+t+);
for (int i=;i<=n;i++) fa[i]=i;
for (int i=;i<=t;i++)
if (find(edge[i].x)!=find(edge[i].y)) ans+=edge[i].z,fa[find(edge[i].x)]=find(edge[i].y);
cout<<ans;
return ;
}

BZOJ3714 PA2014Kuglarz(最小生成树)的更多相关文章

  1. 【BZOJ3714】Kuglarz(最小生成树)

    [BZOJ3714]Kuglarz(最小生成树) 题面 BZOJ Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯 ...

  2. BZOJ3714 [PA2014]Kuglarz 【最小生成树】

    题目链接 BZOJ3714 题解 我们如果知道了所有的数,同样就知道了所有的前缀和 相反,我们如果求出了所有前缀和,就知道了所有的数,二者是等价的 对于一个区间\([l,r]\)如果我们知道了前缀和\ ...

  3. 【BZOJ3714】[PA2014]Kuglarz 最小生成树

    [BZOJ3714][PA2014]Kuglarz Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获 ...

  4. BZOJ3714 PA2014 Kuglarz 最小生成树

    题目传送门 题意:有$N$个盒子,每个盒子中有$0$或$1$个球.现在你可以花费$c_{i,j}$的代价获得$i$到$j$的盒子中球的总数的奇偶性,求最少需要多少代价才能知道哪些盒子中有球.$N \l ...

  5. [bzoj3714] [PA2014] Kuglarz(最小生成树)

    我们考虑这个题...思路比较神仙. 就是我们设\(sum[i]\)为前i个的区间里的情况,然后我们知道\(sum[j]\)的话,我们就可以知道\(j-i\)的情况了 所以说这很像最小生成树里面的约束条 ...

  6. 【kruscal】【最小生成树】【并查集扩展】bzoj3714 [PA2014]Kuglarz

    ORZ:http://www.cnblogs.com/zrts/p/bzoj3714.html #include<cstdio> #include<algorithm> usi ...

  7. [BZOJ3714]Kuglarz(最小生成树)

    Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费\(C_{i,j}\)元,魔术师就会告诉 ...

  8. 最小生成树(Kruskal算法-边集数组)

    以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...

  9. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

随机推荐

  1. Maven学习(一)-----Maven安装配置总结

    想要安装 Apache Maven 在Windows 系统上, 需要下载 Maven 的 zip 文件,并将其解压到你想安装的目录,并配置 Windows 环境变量. 所需工具 : JDK 1.8 M ...

  2. 003--MySQL 数据库事务

    什么是事务? 事务是一组原子性的 SQL 查询, 或者说是一个独立的工作单元. 在事务内的语句, 要么全部执行成功, 要么全部执行失败. 事务的 ACID 性质 数据库事务拥有以下四个特性, 即 AC ...

  3. 7个Node.js的Web框架

    NodeJS也就是Node,是众所周知的使用javascript构建Web应用框架,它启动一个服务器非常简单,如下: var http = require('http'); http.createSe ...

  4. Laxcus大数据操作系统2.0(5)- 第二章 数据组织

    第二章 数据组织 在数据的组织结构设计上,Laxcus严格遵循数据和数据描述分离的原则,这个理念与关系数据库完全一致.在此基础上,为了保证大规模数据存取和计算的需要,我们设计了大量新的数据处理技术.同 ...

  5. shell基础 -- grep、sed、awk命令简介

    在 shell 编程中,常需要处理文本,这里介绍几个文本处理命令. 一.grep 命令 grep 命令由来已久,用 grep 命令来查找 文本十分方便.在 POSIX 系统上,grep 可以在两种正则 ...

  6. 《Cocos2d-x游戏开发实战精解》学习笔记2--在Cocos2d-x中显示一行文字

    在Cocos2d-x中要显示文字就需要用到Label控件.在3.x版本的Cocos2d中,舍弃了之前版本所使用的LabelTTF.LabelAtlas.LabelBMFont 3个用于显示文字的类,而 ...

  7. Maven私有仓库搭建以及使用

    一.使用Docker安装Nexus Docker search nexus docker pull docker.io/sonatype/nexus3 mkdir -p /usr/local/nexu ...

  8. 数据挖掘学习笔记——kaggle 数据预处理

    预处理 1. 删除缺失值 a. 删除行即样本(对于样本如果输出变量存在缺失的则直接删除该行,因为无法用该样本训练) b. 删除列,即特征(采用这种删除方式,应保证训练集和验证集都应当删除相同的特征) ...

  9. 兰亭集势收购美国社交购物网站Ador,收购的是人才

    1 月 6 日消息,外贸电商公司兰亭集势(LightInTheBox)今日宣布,已经完成对美国社交电商网站 Ador 公司的收购.Ador 公司总部位于西雅图.这项资产收购通过现金完成,但未披露交易金 ...

  10. python 标准日志模块loging 及日志系统实例

    本文出处:https://www.cnblogs.com/goodhacker/p/3355660.html#undefined python的标准库里的日志系统从Python2.3开始支持.只要im ...