混合欧拉回路的判断(Dinic)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 7483 | Accepted: 3115 |
Description
start and end at the same junction. As in any city, the streets are either one-way or two-way, traffic rules that must be obeyed by the tour bus. Help the executive board and determine if it's possible to construct a sightseeing tour under these constraints.
Input
respectively. The following s lines contain the streets. Each street is described with three integers, xi, yi, and di, 1 <= xi,yi <= m, 0 <= di <= 1, where xi and yi are the junctions connected by a street. If di=1, then the street is a one-way street (going
from xi to yi), otherwise it's a two-way street. You may assume that there exists a junction from where all other junctions can be reached.
Output
Sample Input
4
5 8
2 1 0
1 3 0
4 1 1
1 5 0
5 4 1
3 4 0
4 2 1
2 2 0
4 4
1 2 1
2 3 0
3 4 0
1 4 1
3 3
1 2 0
2 3 0
3 2 0
3 4
1 2 0
2 3 1
1 2 0
3 2 0
Sample Output
possible
impossible
impossible
possible
题意:在很多城市之间有单向路和双向路,旅游局想构造出一条路线从一个城市出发经过每一条路且仅经过一次然后再回到该城市;
INPUT
第一行首先输入一个整数n代表测试实例的个数,每个测试实例有n和m分别代表城市数和道路数,然后m行,每行有a,b,c三个整数,若c==0则代表a和b之间是双向的,若c==1,则代表是a到b的单向路;
OUTPUT
若可以构建输出"possible",否则"impossible";
分析:
这道题是第一道欧拉回路(混合图求欧拉回路)的题。
1 定义
欧拉通路 (Euler tour)——通过图中每条边一次且仅一次,并且过每一顶点的通路。
欧拉回路 (Euler circuit)——通过图中每条边一次且仅一次,并且过每一顶点的回路。
欧拉图——存在欧拉回路的图。
2 无向图是否具有欧拉通路或回路的判定
G有欧拉通路的充分必要条件为:G 连通,G中只有两个奇度顶点(它们分别是欧拉通路的两个端点)。
G有欧拉回路(G为欧拉图):G连通,G中均为偶度顶点。
3 有向图是否具有欧拉通路或回路的判定
D有欧拉通路:D连通,除两个顶点外,其余顶点的入度均等于出度,这两个特殊的顶点中,一个顶点的入度比出度大1,另一个顶点的入度比出度小1。
D有欧拉回路(D为欧拉图):D连通,D中所有顶点的入度等于出度。
4 混合图。混合图也就是无向图与有向图的混合,即图中的边既有有向边也有无向边。
5 混合图欧拉回路
混合图欧拉回路用的是网络流。
把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路。
现在每个点入度和出度之差均为偶数。将这个偶数除以2,得x。即是说,对于每一个点,只要将x条边反向(入>出就是变入,出>入就是变出),就能保证出 = 入。如果每个点都是出 = 入,那么很明显,该图就存在欧拉回路。
现在的问题就变成了:该改变哪些边,可以让每个点出 = 入?构造网络流模型。有向边不能改变方向,直接删掉。开始已定向的无向边,定的是什么向,就把网络构建成什么样,边长容量上限1。另新建s和t。对于入 > 出的点u,连接边(u, t)、容量为x,对于出 > 入的点v,连接边(s, v),容量为x(注意对不同的点x不同。当初由于不小心,在这里错了好几次)。之后,察看是否有满流的分配。有就是能有欧拉回路,没有就是没有。查看流值分配,将所有流量非 0(上限是1,流值不是0就是1)的边反向,就能得到每点入度 = 出度的欧拉图。
由于是满流,所以每个入 > 出的点,都有x条边进来,将这些进来的边反向,OK,入 = 出了。对于出 > 入的点亦然。那么,没和s、t连接的点怎么办?和s连接的条件是出 > 入,和t连接的条件是入 > 出,那么这个既没和s也没和t连接的点,自然早在开始就已经满足入 = 出了。那么在网络流过程中,这些点属于“中间点”。我们知道中间点流量不允许有累积的,这样,进去多少就出来多少,反向之后,自然仍保持平衡。
所以,就这样,混合图欧拉回路问题,解了。
总之:
给出一张混合图(有有向边,也有无向边),判断是否存在欧拉回路。
首先是对图中的无向边随意定一个方向,然后统计每个点的入度(indeg)和出度(outdeg),如果(indeg - outdeg)是奇数的话,一定不存在欧拉回路;
如果所有点的入度和出度之差都是偶数,那么就开始网络流构图:
1,对于有向边,舍弃;对于无向边,就按照最开始指定的方向建权值为 1 的边;
2,对于入度小于出度的点,从源点连一条到它的边,权值为(outdeg - indeg)/2;出度小于入度的点,连一条它到汇点的权值为(indeg - outdeg)/2 的边;
构图完成,如果满流(求出的最大流值 == 和汇点所有连边的权值之和),那么存在欧拉回路,否则不存在。
程序:
#include"stdio.h"
#include"string.h"
#include"queue"
#include"stack"
#include"iostream"
#include"string"
#include"map"
#include"stdlib.h"
#define inf 99999999
#define M 1009
using namespace std;
struct st
{
int u,v,w,next,vis;
}edge[M*5];
int t,head[M],out[M],in[M],dis[M],q[M];
void init()
{
t=0;
memset(head,-1,sizeof(head));
memset(out,0,sizeof(out));
memset(in,0,sizeof(in));
}
void add(int u,int v,int w)
{
edge[t].u=u;
edge[t].v=v;
edge[t].w=w;
edge[t].next=head[u];
head[u]=t++; edge[t].u=v;
edge[t].v=u;
edge[t].w=0;
edge[t].next=head[v];
head[v]=t++;
}
int Fabs(int a)
{
if(a<0)
a=-a;
return a;
}
int bfs(int S,int T)
{
memset(dis,-1,sizeof(dis));
int rear=0;
dis[S]=0;
q[rear++]=S;
for(int i=0;i<rear;i++)
{
for(int j=head[q[i]];j!=-1;j=edge[j].next)
{
int v=edge[j].v;
if(edge[j].w&&dis[v]==-1)
{
dis[v]=dis[q[i]]+1;
q[rear++]=v;
if(v==T)
return 1;
}
}
}
return 0;
}
int dfs(int cur,int a,int T)
{
if(cur==T)
return a;
for(int i=head[cur];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(edge[i].w&&dis[v]==dis[cur]+1)
{
int tt=dfs(v,min(a,edge[i].w),T);
if(tt)
{
edge[i].w-=tt;
edge[i^1].w+=tt;
return tt;
}
}
}
return 0;
}
int Dinic(int S,int T)
{
int ans=0;
while(bfs(S,T))
{
while(int tt=dfs(S,inf,T))
ans+=tt;
}
return ans;
}
int main()
{
int T,i;
cin>>T;
while(T--)
{
int n,m;
while(scanf("%d%d",&n,&m)!=-1)
{
init();
for(i=1;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
out[a]++;
in[b]++;
if(c==0)
add(a,b,1);
}
int flag=0;
for(i=1;i<=n;i++)
{
if(Fabs(out[i]-in[i])&1)
flag++;
}
if(flag)
{
printf("impossible\n");continue;
}
int tmp=0;
for(i=1;i<=n;i++)
{
if(out[i]>in[i])
add(0,i,Fabs(out[i]-in[i])/2);
if(in[i]>out[i])
{
add(i,n+1,Fabs(out[i]-in[i])/2);
tmp+=Fabs(out[i]-in[i])/2;
}
}
int ans=Dinic(0,n+1);
if(ans==tmp)
printf("possible\n");
else
printf("impossible\n");
}
}
}
混合欧拉回路的判断(Dinic)的更多相关文章
- PHP针对中英文混合字符串长度判断及截取方法
PHP自带的函数如strlen().mb_strlen()都是通过计算字符串所占字节数来统计字符串长度的,一个英文字符占1字节.例: $enStr = 'Hello,China!'; echo str ...
- HDU 1878 欧拉回路(判断欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...
- POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6448 Accepted: 2654 ...
- UVA-10735 - Euler Circuit(混合欧拉回路输出)
题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度 ...
- Sightseeing tour HDU - 1956(混合欧拉回路)
题意: 有n个点,m条边,其中有单向边和双向边,求是否存在欧拉回路 解析: 刚开始想...判断一下每个点的度数不就好了...emm..还是年轻啊.. 判断是解决不了问题的,因为可能会有某两个点冲突,比 ...
- doT.js实现混合布局,判断,数组,函数使用,取模,数组嵌套
doT.js实现混合布局 数据结构 { "status": "1", "msg": "获取成功", "info ...
- 混合欧拉回路poj 1637 Sightseeing tour
把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路.因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路: 好了,现在 ...
- LOJ-10106(有向图欧拉回路的判断)
题目链接:传送门 思路: (1)将每个单词视为有向路径,单词的起始字母是起始节点,末尾字母是终止节点,然后找由字母建立的有向图 是否是欧拉图或者半欧拉图. (2)先用并查集判断是否连通,再判断入度与出 ...
- poj 2337 && zoj 1919 欧拉回路+连通性判断
题目要求按字典序排列,而且可能有重边 所以一开始就将数组从大到小排列,那么我将字符串加入链表时就会令小的不断前移,大的被挤到后面 这里有一点问题就是我一开始使用的是qsort: int cmp(con ...
随机推荐
- 使用Backbone构建精美应用的7条建议
我们在Bizzabo使用Backbone.js已经有两年的时间了.我们从一个小的网页应用为开始,这些小应用是由Backbone驱动的,而且他们看上去非常友好. Backbone天生就不固执己见.你从文 ...
- ubuntu配置apache和cgi
ubuntu配置apache和cgi . 更新源并进行安装,否则后面的下载可能会不成功. sudo apt-get update sudo apt-get upgrade . 安装apache2服务 ...
- 【AngularJS】AngularJS整合Springmvc、Mybatis环境搭建
近期想学习AngularJS的使用,网上搜了一圈后,折腾了半天解决bug后,成功使用AngularJS整合Springmvc.Spring.Mybatis搭建了一个开发环境.(这里Spring使用的版 ...
- erlang的简单模拟半包的产生
gen_tcp:linsten()/2使用的是{packet,2/4/8},则gen_tcp模块在接受或者发送时自动除去包头或者自动加上包头. 本例中使用的是{packet,0}. -module( ...
- asp.net 后端验证
using EntryRegistration.Filters; using EntryRegistration.Models.Entity; using System; using System.C ...
- WiFi(网络)调试Android手机
手机需要root 使用adb tcpip命令开启网络调试功能,一旦手机重启,又要重复这些步骤,比较麻烦. 一劳永逸的方法是,使用re管理器(给予root权限)在手机的/system/build.pro ...
- [ATL/WTL]_[中级]_[保存CBitmap到文件-保存屏幕内容到文件]
场景: 1. 在做图片处理时,比方放大后或加特效后须要保存CBitmap(HBITMAP)到文件. 2.截取屏幕内容到文件时. 3.不须要增加第3方库时. 说明: 这段代码部分来自网上.第一次学atl ...
- java bigDecimal and double
Java BigDecimal和double BigDecimal是Java中用来表示任意精确浮点数运算的类,在BigDecimal中,使用unscaledValue × 10-scale来表示一 ...
- c++ vs 快捷方式
强迫智能感知:Ctrl+J: 强迫智能感知显示参数信息:Ctrl-Shift-空格: Ctrl+E,D ----格式化全部代码 Ctrl+A+K+F Ctrl+E,F ----格式化选中的代码 Ctr ...
- 有限状态机FSM详解及其实现
有限状态机,也称为FSM(Finite State Machine),其在任意时刻都处于有限状态集合中的某一状态.当其获得一个输入字符时,将从当前状态转换到另一个状态,或者仍然保持在当前状态.任何一个 ...