题意

题目链接

Sol

记得NJU有个特别强的ACM队叫拉格朗,总感觉少了什么。。

不说了直接扔公式

\[f(x) = \sum_{i = 1}^n y_i \prod_{j \not = i} \frac{k - x[j]}{x[i] - x[j]}
\]

复杂度\(O(n^2)\)

如果\(x\)的取值是连续的话就前缀积安排一下,复杂度\(O(n)\)

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e6 + 10, mod = 998244353;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, K, x[MAXN], y[MAXN];
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
int Lagelangfuckchazhi(int k) {
int ans = 0;
for(int i = 1; i <= N; i++) {
int up = 1, down = 1;
for(int j = 1; j <= N; j++) {
if(i == j) continue;
up = mul(up, add(k, -x[j]));
down = mul(down, add(x[i], -x[j]));
}
ans = add(ans, mul(y[i], mul(up, fp(down, mod - 2))));
}
return ans;
}
int main() {
N = read(); K = read();
for(int i = 1; i <= N; i++) x[i] = read(), y[i] = read();
printf("%d", Lagelangfuckchazhi(K));
return 0;
}
/*
*/

洛谷P4781 【模板】拉格朗日插值(拉格朗日插值)的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  3. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  4. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  5. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  6. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  7. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  8. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  9. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  10. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

随机推荐

  1. 确定 RN 中方法的 queue

     如果不指定,每一个模块,都会生成自己的一个串行队列. 可以通过强行声明一个队列来指定所有方法都在这个队列执行 - (dispatch_queue_t)methodQueue { return di ...

  2. Vue 父子组件传递方式

    问题: parent.vue <template> <div> 父组件 <child :childObject="asyncObject">&l ...

  3. GDB:从单线程调试到多线程调试(MFiX单步调试)

    GDB:从单线程调试到多线程调试 1. 裸跑GDB 1.1 安装GDB sudo apt-get install gdb 1.2 编译程序 由于需要调试,因此编译的时候需要添加-g编译参数: 1.3 ...

  4. [BZOJ5248][2018九省联考]一双木棋

    题目描述 https://www.lydsy.com/JudgeOnline/problem.php?id=5248   Solution 我们首先考虑放棋子的操作 发现它一定放棋子的部分是一个联通块 ...

  5. BZOJ - 2500 树形DP乱搞

    题意:给出一棵树,两个给给的人在第\(i\)天会从节点\(i\)沿着最长路径走,求最长的连续天数\([L,R]\)使得\([L,R]\)为起点的最长路径极差不超过m 求\(1\)到\(n\)的最长路经 ...

  6. 【实战】Axis2后台Getshell

    实战遇到的情况---任意文件读取,读取/conf/axis2.xml内容,读取用户名和密码登录后台 当然弱口令也是屡试不爽的. 操作起来 1.上传cat.aar(链接:https://pan.baid ...

  7. (转)MySQL 主从复制搭建,基于日志(binlog

    原文:http://blog.jobbole.com/110934/ 什么是MySQL主从复制 简单来说,就是保证主SQL(Master)和从SQL(Slave)的数据是一致性的,向Master插入数 ...

  8. 更换bbr内核

    1:首先yum update -y更新到最新CentOS 7.3 1611cat /etc/redhat-releaseCentOS Linux release 7.3.1611 (Core) 2: ...

  9. 《LeetBook》leetcode题解(6): ZigZag Conversion[E]

    我现在在做一个叫<leetbook>的免费开源书项目,力求提供最易懂的中文思路,目前把解题思路都同步更新到gitbook上了,需要的同学可以去看看 书的地址:https://hk029.g ...

  10. 解决Linux下pcieport 0000:00:1c.5问题导致的系统根目录/磁盘空间不足

    最近刚换了笔记本,拿到本后在win10基础装上Ubuntu 16.04双系统,有个问题是每次关机都会报一堆pcie问题,并且经常没声音,声音问题通过上一篇文章暂时解决,然后就没在意了,可是几天后出现系 ...