Programs take input and produce output. The output is the result of doing something with the input. Input, transform, output, done.

This pattern is easy to see when the program is a UNIX tool. Take a string, count the words, print out the result. But it’s a lot harder to see when we’re writing an iOS app with a UI, lots of different features, periodic tasks, etc.

What’s the input and output?

The output is often a change in the app’s UI. A switch is toggled or a list gets a new item. Or it could be more than that. It could be a new file on the device’s disk, or it could be an API request. These things are the outputs of the app.

But unlike the classic input/output design, this input and output happens more than once. It’s not just a single input → work → output—the cycle continues while the app is open. The app is always consuming inputs and producing outputs based on them.

So why should we care? Because fresh perspectives are powerful and good and necessary and cool. And in this case, it gives us a fantastic new tool.

State

There’s no intrinsic idea of state from this perspective. There’s just a change in an input resulting in a new output. State might be an implementation detail with how the app handles its inputs, but it’s not necessary. It’s not intrinsic to the idea.

Most problems worth solving have some intrinsic state. State can be essential. But that’s not how we treat it. We solve everything with state. Because we treat all the inputs to our app as different things—a touch event here, a web response there—we can’t combine them in any meaningful way. We can’t transform them uniformly. And so our only tool for dealing with all these different things is state. When our only tool is state, every problem looks like a stateful nail.

 We’re in the habit of constantly introducing more state into our app. New feature? New state. New complexity. New bugs.

But happily this perspective of our app’s output as a function of its inputs over time gives us a new tool: functional reactive programming. Functional reactive programming (FRP) is a paradigm built around the idea of time-varying values produced by time-varying functions.

Time

“Time-varying values” might sound like a bit of sleight-of-hand. Isn’t that just another way of saying “state?” They’re both trying to capture the same idea—that things change as the program runs. But by formalizing and reifying time variance, we can reason about change safely.

Time-varying values can be derived from other time-varying values, which are themselves derived from the time-varying inputs to the app(多条平行线的多个信号源). So while traditional state places the burden of ensuring our app is always in a known consistent state on us, the programmers, FRP lets us define our app in terms of the time-varying values and ensures changes propagate as needed.

Before, state was discrete pieces of data all moving independently. But time-varying values are cogs all fitting together in a gear. When one turns, it turns all its connected cogs, which turns their cogs, which turns… and ends up running the entire mechanism all by themselves.

It’s beautiful.5

There are a lot of other things that behave like time-varying values. The result of asynchronous work is really just a time-varying value that only has a value once the work is done.6 Or a UI element’s value could be seen as a time-varying value that changes as the user interacts with it. If my app is running on a mobile device, the device’s GPS coordinates is a time-varying value.

 State, inputs, and outputs.

Fin

That’s a small, practical example of the principles of FRP in an imperative language. The whole example view is on GitHub: RACSignupDemo.

Functional reactive programming offers a way to once again view our programs as simply input and output. We get to minimize state while also embracing a unified view of what our app is doing. It’s all just inputs and outputs.

http://joshaber.github.io/2013/02/11/input-and-output/

Input and Output-The input is all the sources of action for your app的更多相关文章

  1. [20160704]Addition program that use JOptionPane for input and output

    //Addition program that use JOptionPane for input and output. import javax.swing.JOptionPane; public ...

  2. Python Tutorial 学习(七)--Input and Output

    7. Input and Output Python里面有多种方式展示程序的输出.或是用便于人阅读的方式打印出来,或是存储到文件中以便将来使用.... 本章将对这些方法予以讨论. 两种将其他类型的值转 ...

  3. [Python] Print input and output in table

    Print the input and output in a table using prettyTable. from prettytable import PrettyTable import ...

  4. Input and Output File

    Notes from C++ Primer File State Condition state is used to manage stream state, which indicates if ...

  5. [20171128]rman Input or output Memory Buffers.txt

    [20171128]rman Input or output Memory Buffers.txt --//做一个简单测试rman 的Input or output Memory Buffers. 1 ...

  6. Angular4学习笔记(六)- Input和Output

    概述 Angular中的输入输出是通过注解@Input和@Output来标识,它位于组件控制器的属性上方. 输入输出针对的对象是父子组件. 演示 Input 新建项目connInComponents: ...

  7. Python - 3. Input and Output

    from:http://interactivepython.org/courselib/static/pythonds/Introduction/InputandOutput.html Input a ...

  8. Java中的IO流,Input和Output的用法,字节流和字符流的区别

    Java中的IO流:就是内存与设备之间的输入和输出操作就成为IO操作,也就是IO流.内存中的数据持久化到设备上-------->输出(Output).把 硬盘上的数据读取到内存中,这种操作 成为 ...

  9. NET中调用存储过程(Output、Input)

    NET中调用存储过程(Output.Input) .NET中调用存储过程(Output.Input) 带输入输出参数的存储过程 带输入输出参数的存储过程 create procedure itemCo ...

随机推荐

  1. 基于ASP.NET Core 创建 Web API

    使用 Visual Studio 创建项目. 文件->新建->项目,选择创建 ASP.NET Core Web 应用程序. 基于 ASP.NET Core 2.0 ,选择API,身份验证选 ...

  2. hdu 3999 二叉查找树

    The order of a Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  3. linux服务器上部署jdk+tomcat+rocketmq+redis-cluster

    通常我们拿到一组干净的linux服务器,需要初始化安装一些基础软件,这里一站式介绍部署jdk+tomcat+rocketmq+redis-cluster 前言:如果要在多台服务器上安装,在一台服务器上 ...

  4. ES6学习笔记(四)-数值扩展

    PS: 前段时间转入有道云笔记,体验非常友好,所以笔记一般记录于云笔记中,每隔一段时间,会整理一下, 发在博客上与大家一起分享,交流和学习. 以下:

  5. hdu5824 graph

    传送门 题意:定义一个无向图的权值为图中形为树的连通块数量的$k$次方,求所有$n$个点有标号的简单无向图的权值之和. 这个题还是很妙的啊……(好吧,其实只有最后的复合函数求导比较有意思……) 先套路 ...

  6. Vue使用html2Canvas和canvas2Image下载二维码会模糊的问题解决方法

    // 下载二维码图片的方法 saveImg() { var self = this; html2canvas(document.querySelector(".savePic"), ...

  7. Java学习笔记(4)----Public,Protected,Package,Private修饰符可见性

    Java修饰符类型(public,protected,private,friendly) public的类.类属变量及方法,包内及包外的任何类均可以访问:protected的类.类属变量及方法,包内的 ...

  8. Android解析WindowManagerService(一)WMS的诞生

    前言 此前我用多篇文章介绍了WindowManager,这个系列我们来介绍WindowManager的管理者WMS,首先我们先来学习WMS是如何产生的.本文源码基于Android 8.0,与Andro ...

  9. python中的特殊数据类型

    一.python中的特殊数据类型 对于python,一切事物都是对象,对象基于类创建.像是“wangming”,38,[11,12,22]均可以视为对象,并且是根据不同的类生成的对象. 参照:http ...

  10. Sentinel配置及部署

    一.sentinel.conf  port 26379 dir /opt/redis-3.0.7/dataSentinel sentinel monitor mymaster 192.168.1.15 ...