【刷题】BZOJ 4650 [Noi2016]优秀的拆分
Description
如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串,则我们称该字符串的这种拆分是优秀的。例如,对于字符串 aabaabaa,如果令 A=aabA=aab,B=aB=a,我们就找到了这个字符串拆分成 AABBAABB 的一种方式。一个字符串可能没有优秀的拆分,也可能存在不止一种优秀的拆分。比如我们令 A=aA=a,B=baaB=baa,也可以用 AABBAABB 表示出上述字符串;但是,字符串 abaabaa 就没有优秀的拆分。现在给出一个长度为nn 的字符串 SS,我们需要求出,在它所有子串的所有拆分方式中,优秀拆分的总个数。这里的子串是指字符串中连续的一段。以下事项需要注意:出现在不同位置的相同子串,我们认为是不同的子串,它们的优秀拆分均会被记入答案。在一个拆分中,允许出现 A=BA=B。例如 cccc 存在拆分 A=B=cA=B=c。字符串本身也是它的一个子串。
Input
每个输入文件包含多组数据。输入文件的第一行只有一个整数 TT,表示数据的组数。保证 1≤T≤101≤T≤10。接下来 TT 行,每行包含一个仅由英文小写字母构成的字符串 SS,意义如题所述。
Output
输出 TT 行,每行包含一个整数,表示字符串 SS 所有子串的所有拆分中,总共有多少个是优秀的拆分。
Sample Input
4
aabbbb
cccccc
aabaabaabaa
bbaabaababaaba
Sample Output
3
5
4
7
我们用 S[i,j]S[i,j] 表示字符串 SS 第 ii 个字符到第 jj 个字符的子串(从 11 开始计数)。第一组数据中,共有 33 个子串存在优秀的拆分:S[1,4]=aabbS[1,4]=aabb,优秀的拆分为 A=aA=a,B=bB=b;S[3,6]=bbbbS[3,6]=bbbb,优秀的拆分为A=bA=b,B=bB=b;S[1,6]=aabbbbS[1,6]=aabbbb,优秀的拆分为 A=aA=a,B=bbB=bb。而剩下的子串不存在优秀的拆分,所以第一组数据的答案是 33。第二组数据中,有两类,总共 44 个子串存在优秀的拆分:对于子串S[1,4]=S[2,5]=S[3,6]=ccccS[1,4]=S[2,5]=S[3,6]=cccc,它们优秀的拆分相同,均为A=cA=c,B=cB=c,但由于这些子串位置不同,因此要计算 33 次;对于子串S[1,6]=ccccccS[1,6]=cccccc,它优秀的拆分有 22 种:A=cA=c,B=ccB=cc 和A=ccA=cc,B=cB=c,它们是相同子串的不同拆分,也都要计入答案。所以第二组数据的答案是 3+2=53+2=5。第三组数据中,S[1,8]S[1,8] 和 S[4,11]S[4,11] 各有 22种优秀的拆分,其中 S[1,8]S[1,8] 是问题描述中的例子,所以答案是2+2=42+2=4。第四组数据中,S[1,4]S[1,4],S[6,11]S[6,11],S[7,12]S[7,12],S[2,11]S[2,11],S[1,8]S[1,8] 各有 11 种优秀的拆分,S[3,14]S[3,14] 有 22 种优秀的拆分,所以答案是 5+2=75+2=7。
Solution
先求两个数组,一个是 \(st[i]\) 代表以 \(i\) 开头的AA串的方案数, \(ed[i]\) 代表以 \(i\) 结尾的AA串的方案数,那么最后的答案就是 \(\sum_{i=1}^{n-1}ed[i]*st[i+1]\)
怎么求这两个数组。枚举AA串中A的长度,标记一些下标为这长度的倍数的关键点;依次考虑相邻两个关键点,找到从这两个关键点开始,一起向前走,最远能走多长使得每一步经过的字符是相同的(就是找最长的向前延伸的相同的串);同时也找个向后的。找这个东西其实就是正的串的两个后缀的LCP和反的串的两个后缀的LCP,预处理ST表维护。然后如果向前向后的长度加起来大于枚举的A的长度,那么这两个关键点周围一定有AA串的存在(画个图,想一想)
标记一下,最后用前缀和统计就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=30000+10;
int T,n,m,SA1[MAXN],SA2[MAXN],cnt[MAXN],nxt[MAXN],height1[MAXN],height2[MAXN],Mn[2][21][MAXN],st[MAXN],ed[MAXN],lg[MAXN],rk1[MAXN],rk2[MAXN];
ll ans;
char s[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void GetSA(int *SA,int *height,int *rk)
{
m=300;
memset(nxt,0,sizeof(nxt));
for(register int i=1;i<=n;++i)rk[i]=s[i];
for(register int i=1;i<=m;++i)cnt[i]=0;
for(register int i=1;i<=n;++i)cnt[rk[i]]++;
for(register int i=1;i<=m;++i)cnt[i]+=cnt[i-1];
for(register int i=n;i>=1;--i)SA[cnt[rk[i]]--]=i;
for(register int k=1,ps;k<=n;k<<=1)
{
ps=0;
for(register int i=n-k+1;i<=n;++i)nxt[++ps]=i;
for(register int i=1;i<=n;++i)
if(SA[i]>k)nxt[++ps]=SA[i]-k;
for(register int i=1;i<=m;++i)cnt[i]=0;
for(register int i=1;i<=n;++i)cnt[rk[i]]++;
for(register int i=1;i<=m;++i)cnt[i]+=cnt[i-1];
for(register int i=n;i>=1;--i)SA[cnt[rk[nxt[i]]]--]=nxt[i];
for(register int i=1;i<=n;++i)std::swap(nxt[i],rk[i]);
rk[SA[1]]=1,ps=1;
for(register int i=2;i<=n;rk[SA[i]]=ps,++i)
if(nxt[SA[i]]!=nxt[SA[i-1]]||nxt[SA[i]+k]!=nxt[SA[i-1]+k])ps++;
if(ps>=n)break;
m=ps;
}
for(register int i=1,j,k=0;i<=n;height[rk[i++]]=k)
for(k=k?k-1:k,j=SA[rk[i]-1];s[i+k]==s[j+k];++k);
}
inline void init(int *height,int tp)
{
for(register int i=1;i<=n;++i)Mn[tp][0][i]=height[i];
for(register int j=1;j<20;++j)
for(register int i=1;i+(1<<j-1)<=n;++i)Mn[tp][j][i]=min(Mn[tp][j-1][i],Mn[tp][j-1][i+(1<<j-1)]);
}
inline int query(int tp,int l,int r)
{
if(l>r)std::swap(l,r);l++;
int k=lg[r-l+1];
return min(Mn[tp][k][l],Mn[tp][k][r-(1<<k)+1]);
}
int main()
{
for(register int i=1;i<MAXN;++i)lg[i]=log(i)/log(2);
read(T);
while(T--)
{
scanf("%s",s+1);
n=strlen(s+1);ans=0;
memset(st,0,sizeof(st));
memset(ed,0,sizeof(ed));
GetSA(SA1,height1,rk1);init(height1,0);
std::reverse(s+1,s+n+1);
GetSA(SA2,height2,rk2);init(height2,1);
std::reverse(rk2+1,rk2+n+1);
for(register int len=1;len<=(n>>1);++len)
for(register int l=len,r=l+len,x,y;r<=n;l+=len,r+=len)
{
x=min(query(1,rk2[l],rk2[r]),len);
y=min(query(0,rk1[l],rk1[r]),len);
if(x+y-1<len)continue;
st[l-x+1]++,st[l+y-len+1]--;
ed[r-x+len]++,ed[r+y]--;
}
for(register int i=1;i<=n;++i)st[i]+=st[i-1],ed[i]+=ed[i-1];
for(register int i=1;i<=n;++i)ans+=1ll*ed[i]*st[i+1];
write(ans,'\n');
}
return 0;
}
【刷题】BZOJ 4650 [Noi2016]优秀的拆分的更多相关文章
- [BZOJ]4650: [Noi2016]优秀的拆分
Time Limit: 30 Sec Memory Limit: 512 MB Description 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串, ...
- BZOJ.4650.[NOI2016]优秀的拆分(后缀数组 思路)
BZOJ 洛谷 令\(st[i]\)表示以\(i\)为开头有多少个\(AA\)这样的子串,\(ed[i]\)表示以\(i\)结尾有多少个\(AA\)这样的子串.那么\(Ans=\sum_{i=1}^{ ...
- BZOJ 4650 [Noi2016]优秀的拆分:后缀数组
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4650 题意: 给你一个字符串s,问你s及其子串中,将它们拆分成"AABB&quo ...
- BZOJ 4650 [Noi2016]优秀的拆分 ——后缀数组
我们只需要统计在某一个点开始的形如$AA$字符串个数,和结束的个数相乘求和. 首先枚举循环节的长度L.即$\mid (A) \mid=L$ 然后肯定会经过s[i]和[i+L]至少两个点. 然后我们可以 ...
- [NOI2016]优秀的拆分&&BZOJ2119股市的预测
[NOI2016]优秀的拆分 https://www.lydsy.com/JudgeOnline/problem.php?id=4650 题解 如果我们能够统计出一个数组a,一个数组b,a[i]表示以 ...
- 【BZOJ4560】[NOI2016]优秀的拆分
[BZOJ4560][NOI2016]优秀的拆分 题面 bzoj 洛谷 题解 考虑一个形如\(AABB\)的串是由两个形如\(AA\)的串拼起来的 那么我们设 \(f[i]\):以位置\(i\)为结尾 ...
- luogu1117 [NOI2016]优秀的拆分
luogu1117 [NOI2016]优秀的拆分 https://www.luogu.org/problemnew/show/P1117 后缀数组我忘了. 此题哈希可解决95分(= =) 设\(l_i ...
- [UOJ#219][BZOJ4650][Noi2016]优秀的拆分
[UOJ#219][BZOJ4650][Noi2016]优秀的拆分 试题描述 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 A 和 B 是任意非空字符串,则我们称该字符串的这种拆分是优秀 ...
- [NOI2016]优秀的拆分(SA数组)
[NOI2016]优秀的拆分 题目描述 如果一个字符串可以被拆分为 \(AABB\) 的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串 \(aabaaba ...
随机推荐
- spring源码-aop-5
一.在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软件开发 ...
- Python小白学习之文件内建函数
文件内建函数: 2018-10-24 23:40:02 简单介绍: open()打开文件 read()读取文件(其实是输入文件里的内容到read函数,类似于get(url),所以下面的图片备注的是 ...
- 区块链技术:每位CEO都应了解
区块链技术有可能成为一项广泛应用的突破性技术,像蒸汽机.电力或因特网那 样,改变整个社会和经济的运行方式. 对企业而言,信任至关重要.今天,我们基于信任,将钱存放在银行,通过电商企业 网购产品,并且依 ...
- 使用Xamarin实现串口通讯
前几天我写了年度总结,然后有人说让我教一下他Xamarin串口通讯怎么做,其实跟java没有多大区别. 记得我刚开始接到公司这个项目的时候很懵逼,我去看了别的安卓串口工具,都不行我当时是RS232串口 ...
- HP VC模块Shared uplink Sets配置参考
首先配置MAC地址的分配方式 在左侧导航栏中,点解"MAC Addresses" 选择VC分配MAC地址,并且选择一个合适的地址段,点击"Apply"继续 在弹 ...
- [C++基础] tips
1. 在g++ 中使支持C++11 https://askubuntu.com/questions/773283/how-do-i-use-c11-with-g This you can do by ...
- leetcode个人题解——#33 Search in Rotated Sorted Array
思路:每次取中间元素,一定有一半有序,另一半部分有序,有序的部分进行二分查找,部分有序的部分递归继续处理. class Solution { public: ; int middleSearch(in ...
- ES6的新特性(6)——正则的扩展
正则的扩展 RegExp 构造函数 在 ES5 中,RegExp构造函数的参数有两种情况. 第一种情况是,参数是字符串,这时第二个参数表示正则表达式的修饰符(flag). var regex = ne ...
- WEB前端开发流程总结
作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正 WEB前端开发项目流程总结 1.新建项目 ...
- eFPGA与FPGA SoC,谁将引领下一代可编程硬件之潮流?|半导体行业观察
eFPGA:冉冉升起的新星 eFPGA即嵌入式FPGA(embedded FPGA),是近期兴起的新型电路IP. 随着摩尔定律越来越接近瓶颈,制造ASIC芯片的成本越来越高.因此,设计者会希望ASIC ...