Usage

geom_bar(mapping = NULL, data = NULL, stat = "bin", position = "stack", ...)

Arguments

mapping
The aesthetic mapping, usually constructed with aes or aes_string. Only needs to be set at the layer level if you are overriding the plot defaults.
data
A layer specific dataset - only needed if you want to override the plot defaults.
stat
The statistical transformation to use on the data for this layer.
position
The position adjustment to use for overlappling points on this layer
...
other arguments passed on to layer. This can include aesthetics whose values you want to set, not map. See layer for more details.

Description

The bar geom is used to produce 1d area plots: bar charts for categorical x, and histograms for continuous y. stat_bin explains the details of these summaries in more detail. In particular, you can use the weight aesthetic to create weighted histograms and barcharts where the height of the bar no longer represent a count of observations, but a sum over some other variable. See the examples for a practical example.

Details

The heights of the bars commonly represent one of two things: either a count of cases in each group, or the values in a column of the data frame. By default, geom_bar uses stat="bin". This makes the height of each bar equal to the number of cases in each group, and it is incompatible with mapping values to the y aesthetic. If you want the heights of the bars to represent values in the data, use stat="identity" and map a value to the y aesthetic.

By default, multiple x's occuring in the same place will be stacked a top one another by position_stack. If you want them to be dodged from side-to-side, see position_dodge. Finally, position_fill shows relative propotions at each x by stacking the bars and then stretching or squashing to the same height.

Sometimes, bar charts are used not as a distributional summary, but instead of a dotplot. Generally, it's preferable to use a dotplot (see geom_point) as it has a better data-ink ratio. However, if you do want to create this type of plot, you can set y to the value you have calculated, and use stat='identity'

A bar chart maps the height of the bar to a variable, and so the base of the bar must always been shown to produce a valid visual comparison. Naomi Robbins has a nice article on this topic. This is the reason it doesn't make sense to use a log-scaled y axis with a bar chart

Aesthetics

geom_bar understands the following aesthetics (required aesthetics are in bold):

  • x
  • alpha
  • colour
  • fill
  • linetype
  • size
  • weight

Examples

# Generate data c <- ggplot(mtcars, aes(factor(cyl))) # By default, uses stat="bin", which gives the count in each category c + geom_bar()

c + geom_bar(width=.5)

c + geom_bar() + coord_flip()

c + geom_bar(fill="white", colour="darkgreen")

# Use qplot qplot(factor(cyl), data=mtcars, geom="bar")

qplot(factor(cyl), data=mtcars, geom="bar", fill=factor(cyl))

# When the data contains y values in a column, use stat="identity" library(plyr) # Calculate the mean mpg for each level of cyl mm <- ddply(mtcars, "cyl", summarise, mmpg = mean(mpg)) ggplot(mm, aes(x = factor(cyl), y = mmpg)) + geom_bar(stat = "identity")

# Stacked bar charts qplot(factor(cyl), data=mtcars, geom="bar", fill=factor(vs))

qplot(factor(cyl), data=mtcars, geom="bar", fill=factor(gear))

# Stacked bar charts are easy in ggplot2, but not effective visually, # particularly when there are many different things being stacked ggplot(diamonds, aes(clarity, fill=cut)) + geom_bar()

ggplot(diamonds, aes(color, fill=cut)) + geom_bar() + coord_flip()

# Faceting is a good alternative: ggplot(diamonds, aes(clarity)) + geom_bar() + facet_wrap(~ cut)

# If the x axis is ordered, using a line instead of bars is another # possibility: ggplot(diamonds, aes(clarity)) + geom_freqpoly(aes(group = cut, colour = cut))

# Dodged bar charts ggplot(diamonds, aes(clarity, fill=cut)) + geom_bar(position="dodge")

# compare with ggplot(diamonds, aes(cut, fill=cut)) + geom_bar() + facet_grid(. ~ clarity)

# But again, probably better to use frequency polygons instead: ggplot(diamonds, aes(clarity, colour=cut)) + geom_freqpoly(aes(group = cut))

# Often we don't want the height of the bar to represent the # count of observations, but the sum of some other variable. # For example, the following plot shows the number of diamonds # of each colour qplot(color, data=diamonds, geom="bar")

# If, however, we want to see the total number of carats in each colour # we need to weight by the carat variable qplot(color, data=diamonds, geom="bar", weight=carat, ylab="carat")

# A bar chart used to display means meanprice <- tapply(diamonds$price, diamonds$cut, mean) cut <- factor(levels(diamonds$cut), levels = levels(diamonds$cut)) qplot(cut, meanprice)

qplot(cut, meanprice, geom="bar", stat="identity")

qplot(cut, meanprice, geom="bar", stat="identity", fill = I("grey50"))

# Another stacked bar chart example k <- ggplot(mpg, aes(manufacturer, fill=class)) k + geom_bar()

# Use scales to change aesthetics defaults k + geom_bar() + scale_fill_brewer()

k + geom_bar() + scale_fill_grey()

# To change plot order of class varible # use factor() to change order of levels mpg$class <- factor(mpg$class, levels = c("midsize", "minivan", "suv", "compact", "2seater", "subcompact", "pickup")) m <- ggplot(mpg, aes(manufacturer, fill=class)) m + geom_bar()

Bars, rectangles with bases on x-axis的更多相关文章

  1. Flot Reference flot参考文档

    Consider a call to the plot function:下面是对绘图函数plot的调用: var plot = $.plot(placeholder, data, options) ...

  2. 谈谈Python中列表、元组和数组的区别和骚操作

    一.列表(List) 1.列表的特点 列表是以方括号“[]”包围的数据集合,不同成员以“,”分隔.如 L = [1,2,3], 列表a有3个成员. 列表是可变的数据类型[可进行增删改查],列表中可以包 ...

  3. UVA 10574 - Counting Rectangles 计数

    Given n points on the XY plane, count how many regular rectangles are formed. A rectangle is regular ...

  4. UVA - 10574 Counting Rectangles

    Description Problem H Counting Rectangles Input: Standard Input Output:Standard Output Time Limit: 3 ...

  5. 应用Apache Axis进行Web Service开发

    转自(http://tscjsj.blog.51cto.com/412451/84813) 一.概述 SOAP原意为Simple Object Access Protocol(简单对象访问协议),是一 ...

  6. 有理数的稠密性(The rational points are dense on the number axis.)

    每一个实数都能用有理数去逼近到任意精确的程度,这就是有理数的稠密性.The rational points are dense on the number axis.

  7. 使用axis开发web service服务端

    一.axis环境搭建 1.安装环境 JDK.Tomcat或Resin.eclipse等. 2.到 http://www.apache.org/dyn/closer.cgi/ws/axis/1_4下载A ...

  8. PeopleSoft Rich Text Boxes上定制Tool Bars

      在使用PT8.50或在8.51时,你可能遇到过Rich-text编辑框.该插件使你能够格式化文本,添加颜色.链接.图片等等.下面是效果图: 如果页面中只有这么一个字段,该文本框就会有足够的空间来容 ...

  9. AXIS最佳实践

    前言: Axis是apache一个开源的webservice服务,需要web容器进行发布.本节主要用于介绍使用Axis开发webservice,包括服务端的创建.webservice的部署.客户端的调 ...

随机推荐

  1. IIS7的应用程序池详细解析

    在 IIS 7 中,应用程序池有两种运行模式:集成模式和经典模式.应用程序池模式会影响服务器处理托管代码请求的方式 在IIS 7中,添加一个应用程序或者单独的网站,默认会自动新建一个对应的“应用程序池 ...

  2. FA_资产成批报废(流程)

    2014-06-08 Created By BaoXinjian

  3. ISCC2014-reverse

    这是我做reverse的题解.在咱逆向之路上的mark一下,,水平有限,大牛见笑. 题目及题解链接:http://pan.baidu.com/s/1gd3k2RL 宗女齐姜 果然是仅仅有50分的难度, ...

  4. 导入sklearn 报错,找不到相关模块

    1.问题原因::安装包的来源问题,也可以理解为包版本兼容问题,有的包使用官方出版,有的包使用whl文件安装解决方案:将所有包都统一来源,要么全部使用官方出版的包,要么全部使用whl里面的包,问题就解决 ...

  5. C# POST与参数的字符串格式

    参数拼接方法:&  类似url参数.然后转化为字节型 string postdate = "Submit=" + Submit + "&dopost=&q ...

  6. mysql-5.7 innodb_file_per_table 详解

    一.innodb_file_per_table 的简要说明: 在很久很久以前也就是说还没有innodb_file_per_table 的那个年代,所有的innodb表的数据都是保存在innodb系统表 ...

  7. 基于RHCS的web双机热备集群搭建

    基于RHCS的web双机热备集群搭建 RHCS集群执行原理及功能介绍 1. 分布式集群管理器(CMAN)  Cluster Manager.简称CMAN.是一个分布式集群管理工具.它执行在集群的各个节 ...

  8. C#使用CodeDom动态加载cs文件

    public static object Create(string path) { var provOptions = new Dictionary<string, string>(); ...

  9. Test for Required Behavior, Not Incidental Behavior

    Test for Required Behavior, Not Incidental Behavior Kevlin Henney A COMMON PITFALL IN TESTING is to ...

  10. tomcat的server.xml配置及context配置直接引用工程

    server.xml配置简介         下面是这个文件中的基本配置信息,更具体的配置信息见tomcat的文档         server:         port     指定一个端口,这个 ...