Thrift线程和状态机分析
目录
2. TNonblockingServer::TConnection::transition() 2
1. 工作线程和IO线程
启动Thrift时,可启动两类线程,一是TNonblockingIOThread,另一是Worker:
TNonblockingIOThread负责接受连接,和收发数据;而Worker负责回调服务端的用户函数。
TNonblockingIOThread::registerEvents主要做了两件事:
1) 注册TNonblockingIOThread::listenHandler(),这个是用来接受连接请求的;
2) 注册TNonblockingIOThread::notifyHandler(),这个是用来监听管道的。
TNonblockingIOThread和Worker两类线程间通过队列进行通讯,队列类型为std::queue<boost::shared_ptr<ThreadManager::Task> >。
class ThreadManager::Task: public Runnable { public: void run() { // runnable_实际为TNonblockingServer::TConnection::Task runnable_->run(); } private: // 这里的Runnable实际为TNonblockingServer::TConnection::Task // 在TNonblockingServer::TConnection::transition()中被push进来 boost::shared_ptr<Runnable> runnable_; }; |
2. TNonblockingServer::TConnection::transition()
transition()为状态切换函数,状态有两种:一是socket的状态,另一是rpc会话的状态。APP开头的是rpc会话的状态,SOCKET开头的是socket的状态。
在APP_READ_REQUEST状态发生在IO线程中,addTask()会将任务转交给或工作线程,然后由工作线程回调服务端的函数。
TNonblockingServer::TConnection::Task { public: void run() { // 回调 processor_->process(input_, output_, connectionContext_); // 回调完后通知, // 从工作线程重回到IO线程 connection_->notifyIOThread(); // ioThread_->notify(this); // 这个将触发TNonblockingIOThread::notifyHandler() } }; TNonblockingIOThread::notifyHandler() { // 从管道中取出connection的指针地址 TNonblockingServer::TConnection* connection = NULL; int nBytes = recv(fd, cast_sockopt(&connection), kSize, 0); connection->transition(); // 进入状态转换函数 } |
3. RPC函数被调用过程
IO线程收到完整的RPC请求包时,以任务方式转给工作线程,然后由工作线程回调用户写的RPC函数。
完成的调用过程如下图所示:
任务从IO线程进入工作线程:
4. 管道和任务队列
IO线程以Task方式将连接交给工作线程,而工作线程在回调完后,以管道方式还回给IO线程。连接从IO线程进入到或工作线程后,会从libevent中删除,返回后再进入libevent。
5. 对象间关系
class TNonblockingServer: public TServer { public: void serve() // 用户可以直接调用server(),但直接调用run()是更好的做法 { // 创建socket监听 // 创建TNonblockingIOThread // 通过Thread启动TNonblockingIOThread } }; class TServer: public concurrency::Runnable { public: virtual void serve() = 0; virtual void run() // 用户也可以直接调用run() { serve(); } }; |
6. 相关代码摘要
// 线程 // thrift支持原生posix线程和boost线程 void PthreadThread::start() { // PthreadThread是一个Posix线程类 pthread_create(&pthread_, &thread_attr, threadMain, (void*)selfRef); } static void* PthreadThread::threadMain(void* arg) { thread->runnable()->run(); } // 以下为IO线程 /// Three states for sockets: recv frame size, recv data, and send mode enum TSocketState { SOCKET_RECV_FRAMING, SOCKET_RECV, SOCKET_SEND }; /** * Five states for the nonblocking server: * 1) initialize * 2) read 4 byte frame size * 3) read frame of data * 4) send back data (if any) * 5) force immediate connection close */ enum TAppState { APP_INIT, // 初始化 APP_READ_FRAME_SIZE, // 接收包大小 APP_READ_REQUEST, // 接收包数据 APP_WAIT_TASK, APP_SEND_RESULT, // 发送数据 APP_CLOSE_CONNECTION // 关闭连接 }; // 启动监听和IO线程 void TNonblockingServer::serve() { createAndListenOnSocket(); for (uint32_t id = 0; id < numIOThreads_; ++id) { // TNonblockingIOThread是一个Runnable // 以委托方式被运行在PthreadThread中 thread = new TNonblockingIOThread(this, id, listenFd, useHighPriorityIOThreads_); ioThreads_.push_back(thread); } for (uint32_t i = 1; i < ioThreads_.size(); ++i) { // PthreadThread thread; thread->start(); } ioThreads_[0]->run(); // 这将阻塞调用线程 for (uint32_t i = 0; i < ioThreads_.size(); ++i) { ioThreads_[i]->join(); } } void TNonblockingIOThread::run() { eventBase_ = event_base_new(); // IO线程在启动时会调用registerEvents() // 在registerEvents()中完成两个回调函数的注册:listenHandler和notifyHandler // listenHandler回调负责接受请求,并创建连接对象 registerEvents(); event_base_loop(eventBase_, 0); // libevent } void TNonblockingIOThread::registerEvents() { // listenHandler和socket关联 event_set(&serverEvent_, listenSocket_, EV_READ | EV_PERSIST, TNonblockingIOThread::listenHandler, server_); // notifyHandler和pipe关联 event_set(¬ificationEvent_, getNotificationRecvFD(), EV_READ | EV_PERSIST, TNonblockingIOThread::notifyHandler, this); } static void listenHandler(evutil_socket_t fd, short which, void* v) { ((TNonblockingServer*)v)->handleEvent(fd, which); } void TNonblockingServer::handleEvent(int fd, short which) { accept(); createConnection(); } TNonblockingServer::TConnection* TNonblockingServer::createConnection() { // 会将自己绑定到一个线程 // 采用轮询的方式选择线程 // int selectedThreadIdx = nextIOThread_; // nextIOThread_ = (nextIOThread_ + 1) % ioThreads_.size(); // std::stack<TConnection*> connectionStack_; // 使用了内存池connectionStack_ // App状态:APP_INIT // Socket状态:SOCKET_RECV_FRAMING } static void eventHandler(evutil_socket_t fd, short /* which */, void* v) { assert(fd == ((TConnection*)v)->getTSocket()->getSocketFD()); ((TConnection*)v)->workSocket(); } void TNonblockingServer::TConnection::setFlags(short eventFlags) { event_set(&event_, tSocket_->getSocketFD(), eventFlags_, TConnection::eventHandler, this); } void TNonblockingServer::TConnection::setRead() { setFlags(EV_READ | EV_PERSIST); } void TNonblockingServer::TConnection::setWrite() { setFlags(EV_WRITE | EV_PERSIST); } void TNonblockingServer::TConnection::setIdle() { setFlags(0); } void TNonblockingServer::TConnection::workSocket() { case SOCKET_RECV_FRAMING: TSocket::read(); // 接收包大小 transition(); case SOCKET_RECV: TSocket::read(); // 接收包数据 transition(); case SOCKET_SEND: TSocket::write_partial(); // 发送数据(非阻塞的) transition(); } void TNonblockingIOThread::notifyHandler(evutil_socket_t fd, short which, void* v) { recv(); connection->transition(); } // transition()为状态迁移函数 void TNonblockingServer::TConnection::transition() { case APP_INIT: setRead(); case APP_WAIT_TASK: setWrite(); case APP_READ_REQUEST: setIdle(); } TNonblockingServer::TConnection::Task { public: void run() { // 回调 processor_->process(input_, output_, connectionContext_); // 回调完后通知, // 从工作线程重回到IO线程 // connection_的指针地址将通过管道传给工作线程 connection_->notifyIOThread(); // ioThread_->notify(this); } }; TNonblockingIOThread::notifyHandler() { // 从管道中取出connection的指针地址 TNonblockingServer::TConnection* connection = NULL; int nBytes = recv(fd, cast_sockopt(&connection), kSize, 0); connection->transition(); // 进入状态转换函数 } // 以下为工作线程 class ThreadManager::Impl : public ThreadManager; class SimpleThreadManager : public ThreadManager::Impl; class ThreadManager::Worker: public Runnable; class ThreadManager::Task : public Runnable; void SimpleThreadManager::start() { // workerCount_为工作线程数 addWorker(workerCount_); } void ThreadManager::Impl::addWorker(size_t value) { for (size_t ix = 0; ix < value; ix++) { worker = new ThreadManager::Worker(this); // thread为PthreadThread // 调用了worker->run(); thread->start(); } } void ThreadManager::Worker::run() { ThreadManager::Task task; task->run(); } class ThreadManager::Task: public Runnable { public: void run() { // runnable_实际为TNonblockingServer::TConnection::Task runnable_->run(); } private: // 这里的Runnable实际为TNonblockingServer::TConnection::Task // 在TNonblockingServer::TConnection::transition()中被push进来 boost::shared_ptr<Runnable> runnable_; }; void ThreadManager::Impl::add(shared_ptr<Runnable> value) { // std::queue<shared_ptr<Task> > tasks_; task = new ThreadManager::Task(value, expiration); tasks_.push(task); } // 两者关系 class TNonblockingServer: public TServer { public: TNonblockingServer(const boost::shared_ptr<ThreadManager>& threadManager); private: // TNonblockingServer关联了ThreadManager boost::shared_ptr<ThreadManager> threadManager_; }; // 工作线程将回调TNonblockingServer::TConnection::Task class TNonblockingServer::TConnection::Task: public Runnable { }; // task为TNonblockingServer::TConnection::Task void TNonblockingServer::addTask(boost::shared_ptr<Runnable> task) { // 将任务交给工作线程 // threadManager_为SimpleThreadManager threadManager_->add(task, 0LL, taskExpireTime_); } void TNonblockingServer::TConnection::transition() { case APP_READ_REQUEST: if (server_->isThreadPoolProcessing()) { boost::shared_ptr<Runnable> task = new TNonblockingServer::TConnection::Task( processor_, inputProtocol_, outputProtocol_, this); // server_为TNonblockingServer // 回调交给工作线程,IO线程不做这个工作 server_->addTask(task); // server_为TNonblockingServer } else { // 调用TNonblockingServer的构造函数时, // 如果没有指定参数ThreadManager,则会走这条分支 // 这种情况下,isThreadPoolProcessing()返回false processor_->process(inputProtocol_, outputProtocol_, connectionContext_); } } void TNonblockingServer::TConnection::Task::run() { // 回调 processor_->process(input_, output_, connectionContext_); } 内嵌关系: 1) TNonblockingServer内嵌了类TConnection,而TConnection又内嵌了类Task 2) ThreadManager内嵌了类Impl、类Worker和类Task(注意区分于TConnection内嵌的Task),而Impl又是ThreadManager的子类,而Task是对Runnable的实现 class TNonblockingServer: public TServer { public: void serve() // 用户可以直接调用server(),但直接调用run()是更好的做法 { // 创建socket监听 // 创建TNonblockingIOThread // 通过Thread启动TNonblockingIOThread } }; class TServer: public concurrency::Runnable { public: virtual void serve() = 0; virtual void run() // 用户也可以直接调用run() { serve(); } }; |
Thrift线程和状态机分析的更多相关文章
- FS SIP呼叫的消息线程和状态机线程
THREAD 当收到一次呼叫的时候,FS会在TU层创建两个线程,一个线程为状态机线程,另外一个为消息线程.状态机线程通过switch_core_session_thread_launch创建,顾名思义 ...
- JAVA线程池的分析和使用
1. 引言 合理利用线程池能够带来三个好处.第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗.第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行.第三:提 ...
- [转]ThreadPoolExecutor线程池的分析和使用
1. 引言 合理利用线程池能够带来三个好处. 第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗. 第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行. 第 ...
- Java 线程池原理分析
1.简介 线程池可以简单看做是一组线程的集合,通过使用线程池,我们可以方便的复用线程,避免了频繁创建和销毁线程所带来的开销.在应用上,线程池可应用在后端相关服务中.比如 Web 服务器,数据库服务器等 ...
- 线程组ThreadGroup分析详解 多线程中篇(三)
线程组,顾名思义,就是线程的组,逻辑类似项目组,用于管理项目成员,线程组就是用来管理线程. 每个线程都会有一个线程组,如果没有设置将会有些默认的初始化设置 而在java中线程组则是使用类ThreadG ...
- (转)利用CAS算法实现通用线程安全状态机
在多线程环境下,如果某个类是有状态的,那我们在使用前,需要保证所有该类的实例对象状态一致,否则会出现意向不到的bug.下面是通用线程安全状态机的实现方法. public class ThreadSav ...
- ThreadPoolExecutor线程池的分析和使用
1. 引言 合理利用线程池能够带来三个好处. 第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗. 第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行. 第 ...
- Linux 线程实现机制分析 Linux 线程模型的比较:LinuxThreads 和 NPTL
Linux 线程实现机制分析 Linux 线程实现机制分析 Linux 线程模型的比较:LinuxThreads 和 NPTL http://www.ibm.com/developerworks/c ...
- 聊聊并发(三)Java线程池的分析和使用
1. 引言 合理利用线程池能够带来三个好处.第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗.第二:提高响应速度.当任务到达时,任务可以不需要的等到线程创建就能立即执行. ...
随机推荐
- 【推荐】开源来自百度商业前端数据可视化团队的超漂亮动态图表--ECharts
本人项目中最近有需要图表的地方,偶然发现一款超级漂亮的动态图标js图表控件,分享给大家,觉得好用的就看一下.更多更漂亮的演示大家可以参考下面两个网址:ECharts官方网址:http://ecomfe ...
- java的按值传递与按引用传递
还是比较混乱 主要看怎么理解了 java没有指针一说是因为jvm将指针给隐藏了起来 说到底还是靠地址 按值传递显然直接将内存空间的内容传递给对方 之后再与传递者无关 引用是在栈空间建一个堆空间对象的映 ...
- 如何判断两个IP地址是不是在同一个网段
要判断两个IP地址是不是在同一个网段,就将它们的IP地址分别与子网掩码做与运算,得到的结果一网络号,如果网络号相同,就在同一子网,否则,不在同一子网. 例:假定选择了子网掩码255.255.254. ...
- jsp页面的基本语法
JSP全称Java Server Pages,顾名思义就是运行中java服务器中页面,也就是在我们JavaWeb中的动态页面,其本质就是一个Servlet. 学习jsp的基本语法主要就是学习服务器是如 ...
- springMVC等小知识点记录。。。持续更新
1.springMVC 项目根路径访问页面配置 <!-- 表示当访问主页时自动转发到index控制器 --> <mvc:view-controller path="/&qu ...
- PHP外部调用网站百度统计数据的方法详解
目的:外部调用网站的百度统计(tongji.baidu.com)数据. 条件:1.具备调用目标网站的百度统计平台管理权限 2.PHP环境支持curl函数. 原理:同PHP小偷程序原理,通过curl函数 ...
- Javascript继承机制的设计思想
转自:http://www.ruanyifeng.com/blog/2011/06/designing_ideas_of_inheritance_mechanism_in_javascript.htm ...
- CSS布局模型学习
转自:http://www.cnblogs.com/erliang/p/4092192.html CSS布局模型学习 参考链接慕课网:HTML+CSS基础课程 知识基础 1. 样式 内联 嵌入 外 ...
- id取模分表
场景 1 假设按用户id分2个库 每个库分10张表. 分表策略 1.用户id%2 确定库 用户id%3确定表. 2.(用户id%(2*10))/ 10 取整确定库,(用户id%(2*10)%10确 ...
- webkit内核的浏览器为什么removeAttribute('style')会失效?
做了一些研究,应该算是理清了问题. 首先,我们在这里常说的「属性」(attributes)其实分为两种:内容属性(content attributes)以及 IDL 属性(IDL attributes ...