POJ 3177 Redundant Paths - from lanshui_Yang
Description
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Sample Input
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
2
题目大意:直接抽象一下问题:给你一个无向连通图,计算最少需要添加多少边,才能使得任意两点之间至少有两条相互“边独立”的道路(即两条路径中没有相同的边)。
解题思路:这里要用到边双连通分量的知识,先解释一下:在边双连通分量中,不存在割边,其中任何一对顶点之间至少存在两条无公共边的路径(允许有公共内部顶点)。很容易看出,边连通分量中的所有点可以缩为一个点。这样原图就大大简化了,缩点之后的图中的边就只剩下桥了,然后统计出新生成的图(准确说应该是树)中的度为 1 的顶点个数sum ,运用结论(sum + 1)/ 2 就得到答案了。
Ps:缩点时要用到并查集。。
请看代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std ;
const int MAXN = 5005 ;
struct Node
{
int adj ;
int e ; // 边的序号
Node *next ;
} ;
Node mem[MAXN * 2] ; // 边节点的数组
int memp ; // 统计边节点
Node *vert[MAXN] ; // 顶点指针数组
int set[MAXN] ; // 用于并查集
bool vis[MAXN] ; // 标记数组,记录顶点是否被访问过
bool vise[MAXN * 2] ; // 标记数组,记录边是否被访问过
int low[MAXN] ; // 记录顶点在深度优先搜索生成树中通过自己的子孙(如果有的话)以及一条回边
// 可以到达的最小深度
int dfn[MAXN] ; // 记录顶点在深度优先搜索生成树中所在的深度
int bridges[MAXN * 2][2] ; // 记录桥的两端顶点
int belong[MAXN] ; // 记录每个顶点所属的边连通分量
int d[MAXN] ; // 统计桥的两端顶点(缩点之后)的度
int cbridges ; // 记录原图中桥的个数
int tmpdfn ;
int counte ; // 给图中的边编号
int sumfz ; // 统计原图中边连通分量个数
int root ; // 记录根节点
int n , m ;
void clr() // 初始化
{
memp = 0 ;
counte = 0 ;
memset(vis , 0 ,sizeof(vis)) ;
memset(vert , 0 , sizeof(vert)) ;
memset(vise , 0 , sizeof(vise)) ;
memset(belong , -1 , sizeof(belong)) ;
memset(bridges , -1 , sizeof(bridges)) ;
memset(low , 0 , sizeof(low)) ;
memset(dfn , 0 , sizeof(dfn)) ;
}
int find(int x) // 并查集(查找部分)
{
int r = x ;
int t ;
while (r != set[r])
{
r = set[r] ;
}
/* while (x != set[x]) // 并查集的优化 , 可以加在程序中
{
t = set[x] ;
set[x] = r ;
x = t ;
}*/
return r ;
}
void unitset(int i , int j) // 并查集(合并部分)
{
int tx = find(i) ;
int ty = find(j) ;
if(tx < ty)
{
set[ty] = tx ;
}
else
{
set[tx] = ty ;
}
}
void init() // 输入
{
int i , j ;
for(i = 0 ; i < m ; i ++)
{
int a , b ;
scanf("%d%d" , &a , &b) ; //建图
mem[memp].adj = b ;
mem[memp].e = counte ;
mem[memp].next = vert[a] ;
vert[a] = &mem[memp] ;
memp ++ ; mem[memp].adj = a ;
mem[memp].e = counte ++ ;
mem[memp].next = vert[b] ;
vert[b] = &mem[memp] ;
memp ++ ; root = b ;
}
}
void dfs(int u) // 找桥
{
Node *p = vert[u] ;
while (p != NULL)
{
int v = p -> adj ;
int te = p -> e ;
if(!vise[te]) // 图中可能有重边,所以应先判断此边是否被访问过
{
vise[te] = 1 ;
if(!vis[v])
{
vis[v] = 1 ;
dfn[v] = low[v] = ++ tmpdfn ;
dfs(v) ;
low[u] = min(low[u] , low[v]) ;
if(low[v] > dfn[u]) // (u , v) 是桥
{
bridges[cbridges][0] = u ;
bridges[cbridges ++][1] = v ;
}
else // 如果(u,v)不是桥,那么u、v必在一个边连通分量中
{
unitset(u , v) ;
}
}
else
{
low[u] = min(low[u] , dfn[v]) ;
}
}
p = p -> next ;
}
}
int countfz() //统计边连通分支数(缩点)
{
int i ;
int k ;
int fz = 0 ;
for(i = 1 ; i <= n ; i ++)
{
k = find(i) ;
if(belong[k] == -1)
{
belong[k] = fz ++ ;
}
belong[i] = belong[k] ; // 缩点
}
return fz ;
}
void solve()
{
int i ;
for(i = 1 ; i <= n ; i ++) // 初始化并查集
{
set[i] = i ;
}
tmpdfn = 1 ;
cbridges = 0 ;
vis[root] = 1 ;
dfn[root] = low[root] = tmpdfn ;
dfs(root) ;
sumfz = countfz() ;
memset(d , 0 , sizeof(d)) ;
for(i = 0 ; i < cbridges ; i ++) // 统计各个边连通分量的度
{
int ta = bridges[i][0] ;
int tb = bridges[i][1] ;
d[belong[ta]] ++ ;
d[belong[tb]] ++ ;
}
int sumd1 = 0 ;
for(i = 0 ; i < sumfz ; i ++)
{
if(d[i] == 1)
sumd1 ++ ;
}
printf("%d\n" , (sumd1 + 1) / 2) ; // (度数为1的顶点个数 + 1)/ 2 即得答案
}
int main()
{
while (scanf("%d%d" , &n , &m) != EOF)
{
clr() ;
init() ;
solve() ;
}
return 0 ;
}
POJ 3177 Redundant Paths - from lanshui_Yang的更多相关文章
- tarjan算法求桥双连通分量 POJ 3177 Redundant Paths
POJ 3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12598 Accept ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- POJ 3177 Redundant Paths(边双连通的构造)
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13717 Accepted: 5824 ...
- POJ 3177——Redundant Paths——————【加边形成边双连通图】
Redundant Paths Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- [双连通分量] POJ 3177 Redundant Paths
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13712 Accepted: 5821 ...
- poj 3177 Redundant Paths
题目链接:http://poj.org/problem?id=3177 边双连通问题,与点双连通还是有区别的!!! 题意是给你一个图(本来是连通的),问你需要加多少边,使任意两点间,都有两条边不重复的 ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction
这两题是一样的,代码完全一样. 就是给了一个连通图,问加多少条边可以变成边双连通. 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话,把双连通子图收缩为一个点,形成一颗树 ...
- poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11047 Accepted: 4725 ...
- POJ - 3177 Redundant Paths(边双连通分支)(模板)
1.给定一个连通的无向图G,至少要添加几条边,才能使其变为双连通图. 2. 3. //边双连通分支 /* 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话, 把双连通子图 ...
随机推荐
- Net处理html页面元素工具类(HtmlAgilityPack.dll)的使用
现在,在不少应用场合中都希望做到数据抓取,特别是基于网页部分的抓取.其实网页抓取的过程实际上是通过编程的方法,去抓取不同网站网页后,再进行 分析筛选的过程.比如,有的比较购物网站,会同时去抓取不同购物 ...
- 10、ERP设计之系统基础管理(BS)- 平台化设计
ShareERP 2013-09-03 ERP业务平台化是每个软件提供商必须要进行的趋势,传统定制化路线已死,不能走定制化的老路了.以往最大问的题是不能累积和沉淀技术及提升项目业务管理能力,其次是管理 ...
- PPTP和L2TP的区别
PPTP是点到点的隧道协议,服务器端使用TCP 的1723端口,同时使用GRE协议,加密上使用MPPE.位于NAT后的客户端连接会有问题. L2TP是二层隧道VPN,使用IPsec 进行加密,服务器端 ...
- SE 2014年4月30日
如图配置: SW1 SW2 SW3 SW4组成一环型网络 Sw2 和Sw4个存在两业务vlan(vlan 10 和vlan 20) 1.Smart Link 组1 的引用实例1(绑定VLAN 10 ) ...
- Backbone.js 为复杂Javascript应用程序提供模型(models)、集合(collections)、视图(views)的结构
Backbone.js 为复杂Javascript应用程序提供模型(models).集合(collections).视图(views)的结构.其中模型用于绑定键值数据和 自定义事件:集合附有可枚举函数 ...
- Mutex(测量)
游标共享怎样使用Mutex kks 使用mutex以便保护对于下述基于parent cursor父游标和子游标child cursor的一系列操作 对于父游标parent cursor的操作: 基于发 ...
- U6Linux的文件权限与目录配置
1.ll查看文件信息:[权限][连接][所有者][用户组][文件容量][修改日期][文件名] 2.第一个字符代表文件的属性:若为[d]则是目录.若为[-]则是文件.若为[l]则为连接. 3.chgrp ...
- HDOJ 5276 YJC tricks time multimap
multimap的使用 YJC tricks time Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/262144 K ...
- MySQL命令行数据操作使用心得(总结版)
Char 0~255 Varchar 0~65535 text 0~65535(只能保存字符) Longtext 0~4294967295(只能保存字符) CMD登陆mysql mysql -u ro ...
- 新型I/O架构引领存储之变(四)
新型I/O架构引领存储之变(四) 作者:廖恒 应对挑战--商务及技术考量 本文前面的部分分析了砖块模式与生俱来的总拥有成本(TCO)过高的问题.为了战胜这一挑战,超大规模数据中心的运营者须要从两个不同 ...