POJ 3177 Redundant Paths - from lanshui_Yang
Description
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Sample Input
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
2
题目大意:直接抽象一下问题:给你一个无向连通图,计算最少需要添加多少边,才能使得任意两点之间至少有两条相互“边独立”的道路(即两条路径中没有相同的边)。
解题思路:这里要用到边双连通分量的知识,先解释一下:在边双连通分量中,不存在割边,其中任何一对顶点之间至少存在两条无公共边的路径(允许有公共内部顶点)。很容易看出,边连通分量中的所有点可以缩为一个点。这样原图就大大简化了,缩点之后的图中的边就只剩下桥了,然后统计出新生成的图(准确说应该是树)中的度为 1 的顶点个数sum ,运用结论(sum + 1)/ 2 就得到答案了。
Ps:缩点时要用到并查集。。
请看代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std ;
const int MAXN = 5005 ;
struct Node
{
int adj ;
int e ; // 边的序号
Node *next ;
} ;
Node mem[MAXN * 2] ; // 边节点的数组
int memp ; // 统计边节点
Node *vert[MAXN] ; // 顶点指针数组
int set[MAXN] ; // 用于并查集
bool vis[MAXN] ; // 标记数组,记录顶点是否被访问过
bool vise[MAXN * 2] ; // 标记数组,记录边是否被访问过
int low[MAXN] ; // 记录顶点在深度优先搜索生成树中通过自己的子孙(如果有的话)以及一条回边
// 可以到达的最小深度
int dfn[MAXN] ; // 记录顶点在深度优先搜索生成树中所在的深度
int bridges[MAXN * 2][2] ; // 记录桥的两端顶点
int belong[MAXN] ; // 记录每个顶点所属的边连通分量
int d[MAXN] ; // 统计桥的两端顶点(缩点之后)的度
int cbridges ; // 记录原图中桥的个数
int tmpdfn ;
int counte ; // 给图中的边编号
int sumfz ; // 统计原图中边连通分量个数
int root ; // 记录根节点
int n , m ;
void clr() // 初始化
{
memp = 0 ;
counte = 0 ;
memset(vis , 0 ,sizeof(vis)) ;
memset(vert , 0 , sizeof(vert)) ;
memset(vise , 0 , sizeof(vise)) ;
memset(belong , -1 , sizeof(belong)) ;
memset(bridges , -1 , sizeof(bridges)) ;
memset(low , 0 , sizeof(low)) ;
memset(dfn , 0 , sizeof(dfn)) ;
}
int find(int x) // 并查集(查找部分)
{
int r = x ;
int t ;
while (r != set[r])
{
r = set[r] ;
}
/* while (x != set[x]) // 并查集的优化 , 可以加在程序中
{
t = set[x] ;
set[x] = r ;
x = t ;
}*/
return r ;
}
void unitset(int i , int j) // 并查集(合并部分)
{
int tx = find(i) ;
int ty = find(j) ;
if(tx < ty)
{
set[ty] = tx ;
}
else
{
set[tx] = ty ;
}
}
void init() // 输入
{
int i , j ;
for(i = 0 ; i < m ; i ++)
{
int a , b ;
scanf("%d%d" , &a , &b) ; //建图
mem[memp].adj = b ;
mem[memp].e = counte ;
mem[memp].next = vert[a] ;
vert[a] = &mem[memp] ;
memp ++ ; mem[memp].adj = a ;
mem[memp].e = counte ++ ;
mem[memp].next = vert[b] ;
vert[b] = &mem[memp] ;
memp ++ ; root = b ;
}
}
void dfs(int u) // 找桥
{
Node *p = vert[u] ;
while (p != NULL)
{
int v = p -> adj ;
int te = p -> e ;
if(!vise[te]) // 图中可能有重边,所以应先判断此边是否被访问过
{
vise[te] = 1 ;
if(!vis[v])
{
vis[v] = 1 ;
dfn[v] = low[v] = ++ tmpdfn ;
dfs(v) ;
low[u] = min(low[u] , low[v]) ;
if(low[v] > dfn[u]) // (u , v) 是桥
{
bridges[cbridges][0] = u ;
bridges[cbridges ++][1] = v ;
}
else // 如果(u,v)不是桥,那么u、v必在一个边连通分量中
{
unitset(u , v) ;
}
}
else
{
low[u] = min(low[u] , dfn[v]) ;
}
}
p = p -> next ;
}
}
int countfz() //统计边连通分支数(缩点)
{
int i ;
int k ;
int fz = 0 ;
for(i = 1 ; i <= n ; i ++)
{
k = find(i) ;
if(belong[k] == -1)
{
belong[k] = fz ++ ;
}
belong[i] = belong[k] ; // 缩点
}
return fz ;
}
void solve()
{
int i ;
for(i = 1 ; i <= n ; i ++) // 初始化并查集
{
set[i] = i ;
}
tmpdfn = 1 ;
cbridges = 0 ;
vis[root] = 1 ;
dfn[root] = low[root] = tmpdfn ;
dfs(root) ;
sumfz = countfz() ;
memset(d , 0 , sizeof(d)) ;
for(i = 0 ; i < cbridges ; i ++) // 统计各个边连通分量的度
{
int ta = bridges[i][0] ;
int tb = bridges[i][1] ;
d[belong[ta]] ++ ;
d[belong[tb]] ++ ;
}
int sumd1 = 0 ;
for(i = 0 ; i < sumfz ; i ++)
{
if(d[i] == 1)
sumd1 ++ ;
}
printf("%d\n" , (sumd1 + 1) / 2) ; // (度数为1的顶点个数 + 1)/ 2 即得答案
}
int main()
{
while (scanf("%d%d" , &n , &m) != EOF)
{
clr() ;
init() ;
solve() ;
}
return 0 ;
}
POJ 3177 Redundant Paths - from lanshui_Yang的更多相关文章
- tarjan算法求桥双连通分量 POJ 3177 Redundant Paths
POJ 3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12598 Accept ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- POJ 3177 Redundant Paths(边双连通的构造)
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13717 Accepted: 5824 ...
- POJ 3177——Redundant Paths——————【加边形成边双连通图】
Redundant Paths Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- [双连通分量] POJ 3177 Redundant Paths
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13712 Accepted: 5821 ...
- poj 3177 Redundant Paths
题目链接:http://poj.org/problem?id=3177 边双连通问题,与点双连通还是有区别的!!! 题意是给你一个图(本来是连通的),问你需要加多少边,使任意两点间,都有两条边不重复的 ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction
这两题是一样的,代码完全一样. 就是给了一个连通图,问加多少条边可以变成边双连通. 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话,把双连通子图收缩为一个点,形成一颗树 ...
- poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11047 Accepted: 4725 ...
- POJ - 3177 Redundant Paths(边双连通分支)(模板)
1.给定一个连通的无向图G,至少要添加几条边,才能使其变为双连通图. 2. 3. //边双连通分支 /* 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话, 把双连通子图 ...
随机推荐
- SpringMVC配置+小例子
先加入SpringMVC的jar包,这个官网上有,下载下来放到lib文件夹下. web.xml文件: <?xml version="1.0" encoding="U ...
- HDU 3830 Checkers
意甲冠军: 有三件 所有其他棋子可以跳 不能分开的两个跳跃 当被问及状态u为了国家v最低短跳转 思路: 对于一个状态三个棋子的位置能够设为 x y z (小到大) 仅仅有当y-x=z-y的时候 ...
- [置顶] Guava学习之Multimap
相信大家对Java中的Map类及其之类有大致的了解,Map类是以键值对的形式来存储元素(Key->Value),但是熟悉Map的人都知道,Map中存储的Key是唯一的.什么意思呢?就是假如我们有 ...
- Learning Cocos2d-x for WP8(9)——Sprite到哪,我做主
原文:Learning Cocos2d-x for WP8(9)--Sprite到哪,我做主 工程文件TouchesTest.h和TouchesTest.cpp 相关素材文件 事件驱动同样适用于coc ...
- Java文件压缩分割(待)
http://blog.csdn.net/ycg01/article/details/1366648
- STM32串口乱码
库函数默认8MHz晶振,应根据实际硬件选择 # CMSIS/stm32f10x.h #define HSE_VALUE ((uint32_t)12000000) #if !defined HSE_VA ...
- 有关信息ACM/ICPC竞争环境GCC/G++叠插件研究记录的扩展
0.起因 有时.DFS总是比BFS受人喜爱--毕竟DFS简单粗暴,更,而有些东西BFS不要启动,DFS它似乎是一个可行的选择-- 但是有一个问题,DFS默认直接写入到系统堆栈.系统堆栈和足够浅,此时O ...
- sql server 常用语法
--1 创建数据库 DROP DATABASE mydb1 CREATE DATABASE mydb1 ON ( NAME ='mydb1',FILENAME='D:\mydb1.mdf') LOG ...
- WPF命中测试示例(一)——坐标点命中测试
原文:WPF命中测试示例(一)--坐标点命中测试 命中测试也可被称为碰撞测试,在WPF中使用VisualTreeHelper.HitTest()方法实现,该方法用于获取给定的一个坐标点或几何形状内存在 ...
- win7提示“ipconfig不是内部或外部命令”
进入windows环境变量设置->系统变量,找到path,添加C:\Windows\SysWOW64,或者c:\windows\system32