HDU 3639 Hawk-and-Chicken(Tarjan缩点+反向DFS)
So the teacher came up with an idea: Vote. Every child have some nice handkerchiefs, and if he/she think someone is suitable for the role of Hawk, he/she gives a handkerchief to this kid, which means this kid who is given the handkerchief win the support. Note
the support can be transmitted. Kids who get the most supports win in the vote and able to play the role of Hawk.(A note:if A can win
support from B(A != B) A can win only one support from B in any case the number of the supports transmitted from B to A are many. And A can't win the support from himself in any case.
If two or more kids own the same number of support from others, we treat all of them as winner.
Here's a sample: 3 kids A, B and C, A gives a handkerchief to B, B gives a handkerchief to C, so C wins 2 supports and he is choosen to be the Hawk.
Each test case start with two integer n, m in a line (2 <= n <= 5000, 0 <m <= 30000). n means there are n children(numbered from 0 to n - 1). Each of the following m lines contains two integers A and B(A != B) denoting that the child numbered A give a handkerchief
to B.
Then follow a line contain all the Hawks' number. The numbers must be listed in increasing order and separated by single spaces.
2
4 3
3 2
2 0
2 1 3 3
1 0
2 1
0 2
Case 1: 2
0 1
Case 2: 2
0 1 2
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<limits.h>
typedef long long LL;
using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a ) const int maxn=5000+100;
const int maxm=100000+10;
struct node{
int u,v;
int next;
}e[maxm],e1[maxn];
int head[maxn],cntE,cntF;
int DFN[maxn],low[maxn],h[maxn];
int s[maxm],top,index,cnt;
int belong[maxn],instack[maxn];
int dp[maxn],in[maxn],vis[maxn];
int num[maxn];
int n,m;
void init()
{
top=cntE=cntF=0;
index=cnt=0;
CLEAR(DFN,0);
CLEAR(head,-1);
CLEAR(instack,0);
}
void addedge(int u,int v)
{
e[cntE].u=u;e[cntE].v=v;
e[cntE].next=head[u];
head[u]=cntE++;
}
void Tarjan(int u)
{
DFN[u]=low[u]=++index;
instack[u]=1;
s[top++]=u;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(!DFN[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],DFN[v]);
}
int v;
if(DFN[u]==low[u])
{
cnt++;
do{
v=s[--top];
belong[v]=cnt;
instack[v]=0;
}while(u!=v);
}
}
int dfs(int x)
{
int ans=num[x];
for(int i=h[x];i!=-1;i=e1[i].next)
{
int v=e1[i].v;
if(!vis[v])
{
vis[v]=1;
ans+=dfs(v);
}
}
return ans;
}
void work()
{
REP(i,n)
if(!DFN[i]) Tarjan(i);
if(cnt==1)
{
printf("%d\n",n-1);
REP(i,n)
printf(i==n-1?"%d\n":"%d ",i);
return ;
}
CLEAR(num,0);
CLEAR(dp,0);
CLEAR(in,0);
CLEAR(h,-1);
REP(i,n)//马丹,这里卡了我两天
num[belong[i]]++;
REP(k,n)
{
for(int i=head[k];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(belong[k]!=belong[v])//反向建边dfs.
{
// cout<<"666 "<<endl;
e1[cntF].u=belong[v];
e1[cntF].v=belong[k];
e1[cntF].next=h[belong[v]];
h[belong[v]]=cntF++;
in[belong[k]]++;
}
}
}
REPF(i,1,cnt)
{
if(!in[i])
{
CLEAR(vis,0);
dp[i]=dfs(i)-1;
}
}
int ans=0;
REPF(i,1,cnt)
ans=max(ans,dp[i]);
printf("%d\n",ans);
int flag=0;
REP(i,n)
{
if(dp[belong[i]]==ans)
{
if(!flag)
printf("%d",i),flag=1;
else
printf(" %d",i);
}
}
printf("\n");
}
int main()
{
int t,u,v;
int cas=1;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
printf("Case %d: ",cas++);
work();
}
return 0;
}
HDU 3639 Hawk-and-Chicken(Tarjan缩点+反向DFS)的更多相关文章
- hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)
#1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- hdu 3836 Equivalent Sets(tarjan+缩点)
Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...
- HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- HDU 3639 Hawk-and-Chicken(强连通缩点+反向建图)
http://acm.hdu.edu.cn/showproblem.php?pid=3639 题意: 有一群孩子正在玩老鹰抓小鸡,由于想当老鹰的人不少,孩子们通过投票的方式产生,但是投票有这么一条规则 ...
- HDU 3639 Hawk-and-Chicken(强连通分量+缩点)
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013480600/article/details/32140501 HDU 3639 Hawk-a ...
- HDU 3639 Hawk-and-Chicken (强连通缩点+DFS)
<题目链接> 题目大意: 有一群孩子正在玩老鹰抓小鸡,由于想当老鹰的人不少,孩子们通过投票的方式产生,但是投票有这么一条规则:投票具有传递性,A支持B,B支持C,那么C获得2票(A.B共两 ...
- POJ 1236 Network of Schools(强连通 Tarjan+缩点)
POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意: 给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...
- HDU 3639 Hawk-and-Chicken(良好的沟通)
HDU 3639 Hawk-and-Chicken 题目链接 题意:就是在一个有向图上,满足传递关系,比方a->b, b->c,那么c能够得到2的支持,问得到支持最大的是谁,而且输出这些人 ...
随机推荐
- 【Java 之 JVM】Java内存结构概述
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWl3dXpoaWxpbmc=/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...
- Leetcode - Jump Game Two
和Jump Game几乎相同的想法,他们是DP.关键是使用数组maxNumbers[k]储存的地方k步骤的话.序列号的最远范围,注阵maxNumbers[]它递增. class Solution { ...
- AWS发布架构师认证的专业解决方案
完成Amazon EC2初始化几个例子就足够了,那么证明你的AWS建筑学专业技术需要长时间使用如何?AWS专业建筑师认证新颖的解决方案出炉! 2013年4月,AWS正式启动AWS认证计划,同时发布AW ...
- Flex入门(三)——微架构之Cairngorm
大家都知道我们在开发后台的时候,都会使用MVC,三层等分层架构,使后台代码达到职责更为分明单一,高内聚低耦合,比如,Dao层仅仅是进行和数据库打交道,负责处理数据:Service(B层)仅仅是进行逻辑 ...
- winform正在使用dsoframer迅速"Unable to display the inactive document.Click here to reacitive the document."
于winform正在使用dsoframer 1.3加载word档,但在axFramerControl1.Open("NPOI.docx");于axFramerControl1控制显 ...
- Java多播通讯框架 JGroups(转)
JGroups是一个可靠的群组通讯Java工具包.它基于IP组播(IP multicast),但在可靠性,组成员管理上对它作了扩展. JGroups的可靠性体现在: 1,对所有接收者的消息的无丢失传输 ...
- java它们的定义jar套餐读Excel(这包括2003和2007)数据,和实例
使用java它们的定义jar套餐读excel数据支持excel2007和excel2003 在http://download.csdn.net/detail/u010792467/8079355下载所 ...
- 据序和中序序列或者也许为了一个二进制序列,恢复二进制和打印图像(c语言)
首先要预购和序,以恢复它: 1.首先,我们使用的是递归的方式来完成 2.递归的最小单位:一个空的树和书的前言和第一序.该序列的第一个元素是树的第一序列根,调用这种方法 3.递归的终止条件是.当这棵树的 ...
- java设计模式:观察者模式
package Observer; public class Test { /** * client测试类别 * 观察者模式一般由四部分组成: * 1摘要观察员(教科书被称为一般"Subje ...
- spring mvc 控制器方法传递一些经验对象的数组
由于该项目必须提交一个表单,其中多个对象,更好的方法是直接通过在控制器方法参数的数组. 因为Spring mvc框架在反射生成控制方法的參数对象的时候会调用这个类的getDeclaredConstru ...