Scout YYF I
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4410   Accepted: 1151

Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines.
At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can
go through the "mine road" safely.

Input

The input contains many test cases ended with EOF.

Each test case contains two lines.

The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.

The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000
/*分析:对于n个地雷s[1],s[2],s[3],s[4]...s[n]
如果s都是不递减的。 如果dp[i]表示从1到达i这个位置的概率
则:
dp[s[1]-1]为1~s[1]-1的概率//s[1]不能到达
dp[s[2]-1]为1~s[2]-1也是1->s[1]-1->s[1]+1->s[2]-1的概率
因为最多仅仅能跳两格
所以dp[s[i]+1]一定是从dp[s[i]-1]到达
然后从dp[s[i]+1]到达dp[s[i+1]-1];//这部分就能够用矩阵高速幂
另外依据公式dp[i]=p*dp[i-1]+(1-p)*dp[i-2]也可知从s[i]+1 => s[i+1]-1用矩阵高速幂求
构造初始矩阵:
p 1-p * dp[i] = dp[i+1]
1 0 dp[i-1] dp[i]
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=10+10;
const int N=2;
int n,s[MAX];
double array[N][N],sum[N][N],p; void InitMatrix(){
array[0][0]=p;
array[0][1]=1-p;
array[1][0]=1;
array[1][1]=0;
for(int i=0;i<N;++i){
for(int j=0;j<N;++j)sum[i][j]=(i == j);
}
} void MatrixMult(double a[N][N],double b[N][N]){
double c[N][N]={0};
for(int i=0;i<N;++i){
for(int j=0;j<N;++j){
for(int k=0;k<N;++k){
c[i][j]+=a[i][k]*b[k][j];
}
}
}
for(int i=0;i<N;++i)for(int j=0;j<N;++j)a[i][j]=c[i][j];
} double Matrix(int k){
if(k<0)return 0;//表示s[i-1]~s[i]之间无位置
InitMatrix();//初始化矩阵
while(k){//有k+1个位置,到达第k+1个位置所以是k次
if(k&1)MatrixMult(sum,array);
MatrixMult(array,array);
k>>=1;
}
return sum[0][0];//sum[0][0]*dp[1]+sum[0][1]*dp[0]
} int main(){
while(~scanf("%d%lf",&n,&p)){
for(int i=1;i<=n;++i)scanf("%d",&s[i]);
sort(s+1,s+1+n);
double ans=Matrix(s[1]-2);//1~s[1]-1的概率
for(int i=2;i<=n;++i){
if(s[i] == s[i-1])continue;
double temp=Matrix(s[i]-s[i-1]-2);//s[i-1]~s[i]之间有s[i]-s[i-1]-1个位置,须要走s[i]-s[i-1]-2次到达最后一个位置
ans=ans*(1-p)*temp;//从s[i-1]-1的位置跳两格到s[i-1]+1再到s[i]-1
}
printf("%.7f\n",ans*(1-p));//在s[n]-1位置还须要跳两格才安全了
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

poj3744高速功率矩阵+可能性DP的更多相关文章

  1. [AC自己主动机+可能性dp] hdu 3689 Infinite monkey theorem

    意甲冠军: 给n快报,和m频率. 然后进入n字母出现的概率 然后给目标字符串str 然后问m概率倍的目标字符串是敲数量. 思维: AC自己主动机+可能性dp简单的问题. 首先建立trie图,然后就是状 ...

  2. 矩阵优化dp

    链接:https://www.luogu.org/problemnew/show/P1939 题解: 矩阵优化dp模板题 搞清楚矩阵是怎么乘的构造一下矩阵就很简单了 代码: #include < ...

  3. bzoj 3120 矩阵优化DP

    我的第一道需要程序建矩阵的矩阵优化DP. 题目可以将不同的p分开处理. 对于p==0 || p==1 直接是0或1 对于p>1,就要DP了.这里以p==3为例: 设dp[i][s1][s2][r ...

  4. HDU - 2294: Pendant(矩阵优化DP&前缀和)

    On Saint Valentine's Day, Alex imagined to present a special pendant to his girl friend made by K ki ...

  5. [六省联考2017]组合数问题 (矩阵优化$dp$)

    题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...

  6. Codevs 1305 Freda的道路(矩阵乘法 DP优化)

    1305 Freda的道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description Freda要到Rainbow的城堡去玩了.我们可以认 ...

  7. 洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速$dp\&Floyd$)

    洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速\(dp\&Floyd\)) 标签:题解 阅读体验:https://zybuluo.com/Junl ...

  8. [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)

    题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...

  9. poj 3744 Scout YYF I (可能性DP+矩阵高速功率)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5062   Accepted: 1370 Description YYF i ...

随机推荐

  1. php session 读写锁

    php session 读写锁 先看一个样例,功能: 1.点击页面中一个button,ajax运行php,php中用session记录运行到哪一步. 2.使用ajax轮询还有一个php,获取sessi ...

  2. JavaEE(20) - Web层和EJB的整合(Entity Manager)

    1. 使用容器管理的EntityManager 2. 使用应用程序管理的EntityManager 3. 使用ThreadLocal保证EntityManager的线程安全 4. EAO封装JPA 5 ...

  3. 如何使用Maven创建web工程(详细步骤)

    使用eclipse插件创建一个web project 首先创建一个Maven的Project例如以下图 我们勾选上Create a simple project (不使用骨架) 这里的Packing ...

  4. JNDI数据源配置注意事项

    假设是在原有project上改动 1,applicationContext.xml中改动当中的value值 <bean id="dataSource" class=" ...

  5. 采用xshell链路本地虚拟机Linux

    昨天想安装在自己的机器看Linux.而使用xshell通路.但是这花了很长的时间,于xshell结束所有的提示"Could not connect to '192.168.54.100' ( ...

  6. CSDN博文“待定”如何避免检测规则分析“待定”

    这些天一直很郁闷.鲍文本人一直"待定", 当然,这是非常不舒服的自己.那么今晚最终成为一个非成功出版"待定"文章,这CSDN于大家的反映而放弃了.没想到我后面又 ...

  7. 初学git && 使用总结

    参考文章:http://www.ruanyifeng.com/blog/2014/06/git_remote.html git基础操作   http://www.ruanyifeng.com/blog ...

  8. Javascript学习5 - 函数

    原文:Javascript学习5 - 函数 在Javascript中,函数和对象是交织在一起的.有些函数的特性与对象相关联.这一点的内容在第六部分会讨论到. 这一部分主要讨论函数与其它比较熟悉的语言( ...

  9. 多重集组合数 (DP)

    输入: n=3 m=3 a={1,2,3} M=10000 输出: 6  (0+0+3,0+1+2,0+2+1,1+0+2,1+1+1,1+2+0) 为了不重复计数,同一种类的物品最好一次性处理好.于 ...

  10. ASP.NET MVC+EF框架+EasyUI实现权限管理系列(15)-用户登录详细错误和权限数据库模型设计

    原文:ASP.NET MVC+EF框架+EasyUI实现权限管理系列(15)-用户登录详细错误和权限数据库模型设计     ASP.NET MVC+EF框架+EasyUI实现权限管系列 (开篇)    ...