转自:http://blog.csdn.net/hxxiaopei/article/details/8034308

http://blog.csdn.net/huagong_adu/article/details/7937616

LDA浅析

http://www.slideshare.net/aurora1625/topic-model-lda-and-all-that

Topic model, LDA and all that

LDA漫游指南

http://yuedu.baidu.com/ebook/d0b441a8ccbff121dd36839a?pn=5&pa=44

LDA相关文章

http://blog.csdn.net/pirage/article/details/9467547

http://blog.csdn.net/yangliuy/article/details/8457329

yangliuy实现的代码

第一篇:PLSA及EM算法

第二篇:LDA及Gibbs Samping

第三篇:LDA变形模型-Twitter LDA,TimeUserLDA,ATM,Labeled-LDA,MaxEnt-LDA等

第四篇:基于变形LDA的paper分类总结(bibliography)

第五篇:LDA Gibbs Sampling 的JAVA实现

DTM(Dynamic Topic Models)进行主题演化实验

---------------------------------------------------------------------------------------------------------

在自己机器上(ubuntu12.04),运行Blei(http://www.cs.princeton.edu/~blei/topicmodeling.html)的代码过程中,能正常编译,

但是运行却遇到 段错误的问题。

  在网上找了很多blog和资料都没有解决

  最后决定自己调试错误,用了用gdb调试工具,

最后在实验室罗师兄的帮助下,解决了这个困扰了很久的问题。

main 文件39行:

代码问题终于得以解决。。。。。。

--------------------------------------------------------------------------------------------------------------------------------------

以下参考自:http://www.cnblogs.com/todoit/p/4057619.html

      程序中dtm/sample.sh文件说明

运行例子试验

(1)输入文件(如dtm/example文件夹所示)test-mult.dat和test-seq.dat

  a:foo-mult.dat,(相当于例子中test-mult.dat)用来表示文档和词的关系

      每个文档一行,每一行形式是: unique_word_count index1:count1 index2:count2 ... indexn:counnt

   该文章的总词数(不重复) 词1编号(用数字表示编号):词1频次 词2编号:词2频次   词n编号:词n频次

   例如:11 288:1 1248:1 5:1 1063:2 269:1 654:1 656:2 532:1 373:1 1247:1 543:1

   表示这篇一共有11个不重复的词,第228个词出现1次,1248个词出现1次,这些词是所有文档中统一编号的。

需要注意的一点是:该文件中文档是按时间顺序排列的,时间最早的在最上面,时间最晚的在最下面。

 
  b:foo-deq.dat ,这文件是用来划分时间窗的。

    文件格式如下:

        Number_Timestamps(时间窗总数)
        number_docs_time_1(第一个时间窗的文档数,就是从第一个到第几个文档划分到第一个时间窗,我们如果按年来划分,就把每年的文档数写到这里就行)
         ...
        number_docs_time_i
        ...
        number_docs_time_NumberTimestamps

作者提供的例子,第一行表示分为10个时间窗,第二行表示第一个时间窗有25个文档。(看样子估计也是按年划分的):

          10
          25
          50
          75
          100
          100
          100
          100
          125
          150
          175

当上面两个文件搞定后。作者说还有两个文件虽然不是必须的,但是也是很有用的。

   C: 词典文件

   文档集合中涉及的所有的词,按照上面的词的序号排列。

d:文档信息文件

   每行表示一个文档的基本信息,按照文档a中的顺序排列。

  上述文件都可以用text2ldac生成,在https://github.com/JoKnopp/text2ldac下载,用python打开。

    使用方法,在命令行中,找到text2ldac.py目录,运行 python text2ldac.py -o ./out -e txt ./in

    out文件夹为输出文件位置,in文件夹为输入文件位置。 txt为仅处理txt文件

  (2)运行程序

   作者在readme文件中说,通过运行./main --help命令可以查看所有选项和解释

输入下面的命令(后面的注释是自己加的,。如果影响运行请去掉)

./main \                /*main函数*/
--ntopics=20 \      /*每个时间窗生成20个主题*/                 
--mode=fit \        /*这个应该有dim和fit两个选项*/     
--rng_seed=0 \
--initialize_lda=true \
--corpus_prefix=example/test \
--outname=example/model_run \
--top_chain_var=0.005 \
--alpha=0.01 \
--lda_sequence_min_iter=6 \
--lda_sequence_max_iter=20 \
--lda_max_em_iter=10

                 

 (2)输出结果。  上面文件完成之后,通过运行程序生成下面的文件,并且可以通过R查看结果,我们就可以用这个结果进行分析。

   a  topic-???-var-e-log-prob.dat:

      主要是 e-betas(词在每个主题内每个时间段的分布),一行是一个词。

      从文件中,我们看以看到每行只有一个数字。

   由输入可知:

      有4824个单词的词典。

      有10个时间戳

      生成20个主题

      a = "topic-002-var-e-log-prob.dat"
    b = matrix(a, ncol = 10 byrow=TRUE)
   10列,按行排(本例中表示4824行,10列的矩阵)
   The probability of term 100 in topic 2 at time 3:
    exp(b[100,3])

      可以在dtm\example\model_run\lda-seq中看到例子,有48240行,有4824个词,每个时间窗内有4824个词。

      作者同时给出了在R中查看这些矩阵的方法。比如查看某个词在某个主题的某一个时间段的概率。

   b gam.dat

gammas数据。表示文档与主题的关联。

http://www.cnblogs.com/todoit/p/3753871.html

《Dynamic Topic Detection and Tracking: A Comparison of HDP, C-Word, and Cocitation Methods》笔记

LDA进阶(Dynamic Topic Models)的更多相关文章

  1. 使用DTM ( Dynamic Topic Models )进行主题演化实验

    最近想研究下Dynamic Topic Models(DTM),论文看了看,文科生的水平确实是看不懂,那就实验一下吧,正好Blei的主页上也提供了相应的C++工具, http://www.cs.pri ...

  2. 概率主题模型简介 Introduction to Probabilistic Topic Models

    此文为David M. Blei所写的<Introduction to Probabilistic Topic Models>的译文,供大家参考. 摘要:概率主题模型是一系列旨在发现隐藏在 ...

  3. 转:概率主题模型简介 --- ---David M. Blei所写的《Introduction to Probabilistic Topic Models》的译文

    概率主题模型简介 Introduction to Probabilistic Topic Models      转:http://www.cnblogs.com/siegfang/archive/2 ...

  4. 《Dynamic Topic Detection and Tracking: A Comparison of HDP, C-Word, and Cocitation Methods》笔记

    原文地址:http://onlinelibrary.wiley.com/doi/10.1002/asi.23134/abstract 黄色背景是我认为比较重要的,红色字体是我自己的话. 动态主题监测与 ...

  5. lda 主题模型--TOPIC MODEL--Gibbslda++结果分析

    在之前的博客中已经详细介绍了如何用Gibbs做LDA抽样.(http://www.cnblogs.com/nlp-yekai/p/3711384.html) 这里,我们讨论一下实验结果: 结果文件包括 ...

  6. 【转】基于LDA的Topic Model变形

    转载自wentingtu 基于LDA的Topic Model变形最近几年来,随着LDA的产生和发展,涌现出了一批搞Topic Model的牛人.我主要关注了下面这位大牛和他的学生:David M. B ...

  7. 基于LDA的Topic Model变形

    转载于: 转:基于LDA的Topic Model变形 最近有想用LDA理论的变形来解决问题,调研中.... 基于LDA的Topic Model变形 基于LDA的Topic Model变形最近几年来,随 ...

  8. [IR] Concept Search and LDA

    重要的是通过实践更深入地了解贝叶斯思想,先浅浅地了解下LDA. From: http://blog.csdn.net/huagong_adu/article/details/7937616/ 传统方法 ...

  9. LDA汇总

    1.Blei的LDA代码(C):http://www.cs.princeton.edu/~blei/lda-c/index.html2.D.Bei的主页:http://www.cs.princeton ...

随机推荐

  1. 分享UI设计模型

    UI设计模型是可重用的界面设计解决方案,可以让开发人员少走弯路,节约不少开发时间.下面慧都小编跟大家分享6个很有用的UI设计模型资源,希望对你有用: 1.UI Patterns 由一个丹麦人开发的UI ...

  2. mysql通过字段注释查找字段名称

    原文:mysql通过字段注释查找字段名称 有时候表的字段太多,只是大致记得表的注释,想通过字段注释查找字段名称,可以用如下语句: SELECT COLUMN_NAME,column_comment F ...

  3. sql like 时间需要做转换

    EG: where Convert(varchar(100),[字段名],120) like '2010-10-10%'

  4. 【值得收藏】符号计算软件Maple的学习资料汇编【可免费下载】

    Maple学习教程 Maple是目前世界上最为通用的数学和工程计算软件之一,在数学和科学领域享有盛誉,有“数学家的软件”之称.Maple在全球拥有数百万用户,被广泛地应用于科学.工程和教育等领域,用户 ...

  5. 完美的拥抱GitHub

    Visual Studio 2012完美的拥抱GitHub   前言 一直以来都想使用Git来管理自己平时积累的小代码,就是除了工作之外的代码了.有时候自己搞个小代码,在公司写了,就要通过U盘或者网盘 ...

  6. 一个ASP.NET Web API 2.0应用

    在一个空ASP.NET Web项目上创建一个ASP.NET Web API 2.0应用 由于ASP.NET Web API具有与ASP.NET MVC类似的编程方式,再加上目前市面上专门介绍ASP.N ...

  7. 跨域访问 REST API

    跨域访问 Web Service (REST API) 虽然 JQuery 也能通过授权header实现跨域, 但SharePoint 提供了更简单的方法,它被实现在SP.RequestExecuto ...

  8. RoleManager 进行角色管理

    ASP.NET Identity 使用 RoleManager 进行角色管理 (VS2013RC) 注:本文系作者原创,但可随意转载. 最近做一个Web平台系统,系统包含3个角色,“管理员, 企业用户 ...

  9. [google面试CTCI]1-3.字符串去重

    [字符串与数组] Q:Design an algorithm and write code to remove the duplicate characters in a string without ...

  10. kindeditor使用方法

    一.下载编辑器 下载KindEditor最新版本(本版本为4.1.10) 下载页面:http://kindeditor.net/down.php 二.部署编辑器 解压kindeditor-x.x.x. ...