题目连接

  • 题意:

    给定一个无向图,每一个边有两个属性。长度和一个字母‘L',’O',‘V’。‘E'中的一个。从1点開始到达n点,每次必须依照L -> O -> V -> E -> ... -> E的顺序。到达终点时候必须经过E边
  • 分析:

    对于这样的对边的限制,比較简单的方法是将一个点拆成若干个点。由于经过’L'到达点p的状态和经过‘O'到达点p的状态时不一样的,第一个之后仅仅能经过’O'边。而第二个仅仅能经过‘V'边,所以经过不同的边到达同一个点的时候相应的状态应该分开。也就是将点拆分成四个点。分别表示经过四种边到达p点。

  • 注意:

    图能够有自环。也能够仅仅有一个点

    路径必须至少有一个LOVE

    路径长度尽可能小,长度若相等,那么LOVE的数量尽可能多
Dijkstra方法:(一个点的时候直接特判。避免不必要的麻烦)
const LL INF = 1e18;
const int MAXV = 10000; struct Edge
{
LL from, to, dist;
}; struct HeapNode
{
LL d, u, num;
bool operator < (const HeapNode& rhs) const
{
return d > rhs.d;
}
}; struct Dijkstra
{
int n; //n:点数 m:暂时变量
vector<Edge> edges; //存储全部的边
vector<int> G[MAXV];//每一个点的全部相邻边序号
bool done[MAXV]; // 是否已永久标号
LL d[MAXV]; // s起点到各个点的距离
LL num[MAXV]; void init(int n)
{
this->n = n;
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int dist)
{
G[from].push_back(edges.size());
edges.push_back((Edge) { from, to, dist });
} void dijkstra(int s)
{
priority_queue<HeapNode> Q;
for(int i = 0; i < n; i++) d[i] = INF;
CLR(num, 0);
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push((HeapNode) { 0, s, 0 });
while(!Q.empty())
{
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if(done[u]) continue;
done[u] = true;
for(int i = 0; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if (d[e.to] == d[u] + e.dist)
num[e.to] = max(num[e.to], num[x.u] + 1);
if(d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
num[e.to] = num[x.u] + 1;
Q.push((HeapNode) { d[e.to], e.to, num[e.to] });
}
}
}
}
} dij; LL chk[4]; int main()
{
int T;
RI(T);
FE(kase, 1, T)
{
REP(i, 4) chk[i] = INF;
int n, m, u, v, d, op;
char type;
RII(n, m);
dij.init(n << 2);
REP(i, m)
{
scanf("%d%d%d %c", &u, &v, &d, &type);
u--; v--;
if (type == 'L') op = 0;
else if (type == 'O') op = 1;
else if (type == 'V') op = 2;
else op = 3;
chk[op] = min(chk[op], (LL)d);
dij.AddEdge(u + (op + 3) % 4 * n, v + op * n, d);
dij.AddEdge(v + (op + 3) % 4 * n, u + op * n, d);
}
printf("Case %d: ", kase);
if (n == 1)
{
REP(i, 4)
if (chk[i] == INF)
{
puts("Binbin you disappoint Sangsang again, damn it!");
goto end;
}
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
, chk[0] + chk[1] + chk[2] + chk[3], 1);
end:;
}
else
{
dij.dijkstra(3 * n);
if (dij.d[4 * n - 1] == INF)
puts("Binbin you disappoint Sangsang again, damn it!");
else
{
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %I64d LOVE strings at last.\n"
, dij.d[4 * n - 1], dij.num[4 * n - 1] / 4);
}
}
}
return 0;
}




spfa方法:(一个点也是特判,加点方式与Dijkstra同样)
const LL INF = 1e18;
const int MAXV = 10000; struct Edge
{
int from, to, dist;
}; struct SPFA
{
int n;
LL d[MAXV];
int num[MAXV];
vector<Edge> edges;
vector<int> G[MAXV];
bool inq[MAXV];
void init(int n)
{
this->n = n;
edges.clear();
REP(i, n)
G[i].clear();
}
void AddEdge(int from, int to, int dist)
{
G[from].push_back(edges.size());
edges.push_back((Edge) {from, to, dist});
}
void spfa(int s)
{
queue<int> q;
CLR(inq, false);
CLR(num, 0);
REP(i, n) d[i] = INF;
d[s] = 0;
q.push(s); inq[s] = true;
while (!q.empty())
{
int u = q.front();
q.pop(); inq[u] = false;
REP(i, G[u].size())
{
Edge& e = edges[G[u][i]];
if (d[e.to] == d[u] + e.dist && num[u] + 1 > num[e.to])
{
num[e.to] = num[u] + 1;
if (!inq[e.to])
{
q.push(e.to);
inq[e.to] = true;
}
}
if(d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
num[e.to] = num[u] + 1;
if (!inq[e.to])
{
q.push(e.to);
inq[e.to] = true;
}
}
}
}
}
} spfa; LL chk[4]; int main()
{
int T;
RI(T);
FE(kase, 1, T)
{
REP(i, 4) chk[i] = INF;
int n, m, u, v, d, op;
char type;
RII(n, m);
spfa.init(n << 2);
REP(i, m)
{
scanf("%d%d%d %c", &u, &v, &d, &type);
u--; v--;
if (type == 'L') op = 0;
else if (type == 'O') op = 1;
else if (type == 'V') op = 2;
else op = 3;
chk[op] = min(chk[op], (LL)d);
spfa.AddEdge(u + (op + 3) % 4 * n, v + op * n, d);
spfa.AddEdge(v + (op + 3) % 4 * n, u + op * n, d);
}
printf("Case %d: ", kase);
if (n == 1)
{
REP(i, 4)
if (chk[i] == INF)
{
puts("Binbin you disappoint Sangsang again, damn it!");
goto end;
}
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
, chk[0] + chk[1] + chk[2] + chk[3], 1);
end:;
}
else
{
spfa.spfa(3 * n);
if (spfa.d[4 * n - 1] == INF)
puts("Binbin you disappoint Sangsang again, damn it!");
else
{
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
, spfa.d[4 * n - 1], spfa.num[4 * n - 1] / 4);
}
}
}
return 0;
}




顺便弄一些自己的測试数据。方便查错。

4 4

1 2 1 L

2 1 1 O

1 3 1 V

3 4 1 E

ans:4, 1





4 4

1 2 1 L

2 3 1 O

3 4 1 V

4 1 1 E

ans:no





12  12

1 5 10 L

5 6 10 O

6 7 10 V

7 12 10 E

1 2 1 L

2 3 1 O

3 4 1 V

4 8 1 E

8 9 1 L

9 10 1 O

10 11 1 V

11 12 33 E

ans:40, 2





12  12

1 5 10 L

5 6 10 O

6 7 10 V

7 12 10 E

1 2 1 L

2 3 1 O

3 4 1 V

4 8 1 E

8 9 1 L

9 10 1 O

10 11 1 V

11 12 34 E

ans:40, 1





1 4

1 1 1 L

1 1 1 O

1 1 1 V

1 1 1 E

ans:4, 1





2 8

1 1 2 L

1 1 1 O

1 1 1 V

1 1 1 E

1 2 3 L

2 1 1 O

1 2 1 V

2 1 1 E

ans:5, 1





1 3

1 1 1 L

1 1 1 O

1 1 1 E

ans:no





11 11

1 2 1 L

2 3 1 O

3 4 348 V

4 11 1000 E

1 5 50 L

5 6 50 O

6 7 50 V

7 8 50 E

8 9 50 L

9 10 50 O

10 4 50 V

ans:1350 2

As long as Binbin loves Sangsang的更多相关文章

  1. HDU 4360 As long as Binbin loves Sangsang spfa

    题意: 给定n个点m条边的无向图 每次必须沿着LOVE走,到终点时必须是完整的LOVE,且至少走出一个LOVE, 问这样情况下最短路是多少,在一样短情况下最多的LOVE个数是多少. 有自环. #inc ...

  2. 2012 Multi-University #7

    最短路+拆点 A As long as Binbin loves Sangsang 题意:从1走到n,每次都是LOVE,问到n时路径是连续多个"LOVE"的最短距离.秀恩爱不想吐槽. 分析:在普通的最 ...

  3. 【转】最短路&差分约束题集

    转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...

  4. 8-12-COMPETITION

    链接:最短路 A.HDU 2544    最短路 算是最基础的题目了吧.............我采用的是Dijkstra算法....... 代码: #include <iostream> ...

  5. 2012 Multi-University Training Contest 7

    2012 Multi-University Training Contest 7 A.As long as Binbin loves Sangsang B.Dead or alive C.Dragon ...

  6. 转载 - 最短路&差分约束题集

    出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548    A strange lift基础最短路(或bfs)★ ...

  7. Microsoft Loves Linux

    微软新任CEO纳德拉提出的“Microsoft Loves Linux”,并且微软宣布.NET框架的开源,近期Microsoft不但宣布了Linux平台的SQL Server,还宣布了Microsof ...

  8. 5806 NanoApe Loves Sequence Ⅱ(尺取法)

    传送门 NanoApe Loves Sequence Ⅱ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/131072 K ...

  9. 5805 NanoApe Loves Sequence(想法题)

    传送门 NanoApe Loves Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/131072 K ( ...

随机推荐

  1. Effective C++_笔记_条款04_确定对象被使用之前已先被初始化

    (整理自Effctive C++,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 读取未初始化的值会导致不确定的行为.在某些平台上,仅仅只是读取为 ...

  2. Swift - 本地数据的保存与加载(使用NSCoder将对象保存到.plist文件)

    下面通过一个例子将联系人数据保存到沙盒的“documents”目录中.(联系人是一个数组集合,内部为自定义对象). 功能如下: 1,点击“保存”将联系人存入userList.plist文件中 2,点击 ...

  3. Lucene.Net 2.3.1开发介绍 —— 三、索引(六)

    原文:Lucene.Net 2.3.1开发介绍 -- 三.索引(六) 2.2 Field的Boost 如果说Document的Boost是一条线,那么Field的Boost则是一个点.怎么理解这个点呢 ...

  4. OCA读书笔记(7) - 管理数据库存储结构

    7.Managing Database Storage Structures 逻辑结构 数据库的存储结构有物理结构和逻辑结构组成的 物理结构:物理上,oracle是由一些操作系统文件组成的 SQL&g ...

  5. 在VC++中启用内存泄露检测

    检测内存泄漏的主要工具是调试器和 CRT 调试堆函数.若要启用调试堆函数,请在程序中包括以下语句: #define CRTDBG_MAP_ALLOC#include <stdlib.h># ...

  6. WiPlug_百度百科

    WiPlug_百度百科 WiPlug

  7. jasperreport报表生成时编译的错误

    在帮徐老板解决一个jasperreport报表生成时编译的错误: 刚开始时,加上他所给的 jar 包之后,错误显示为: net.sf.jasperreports.engine.JRException: ...

  8. ThinkPHP连接数据库出现的错误:Undefined class constant 'MYSQL_ATTR_INIT_COMMAND'

    最近看了看ThinkPHP.在连接mysql数据库时出现了错误:Undefined class constant 'MYSQL_ATTR_INIT_COMMAND'.意思就是没有PDO(PHP数据对象 ...

  9. 快速学会搭建SVN服务器

    原文:快速学会搭建SVN服务器 SVN是一个版本控制工具,常用于我们软件开发项目中,用来管理我们团队共同使用的代码,文档等历史版本的管理,保持代码的更新,避免混乱. 需要工具: svn安装程序:免费下 ...

  10. Perl语言学习笔记 9 正则表达式处理文本

    1.更换 s/PATTERN/REPLACE/; #返回是否更换成功布尔值 能够使用捕获变量,如:s/(\w)/$1/ 匹配失败则不做不论什么处理 2.定界符 对于没有左右之分的定界符.反复三次就可以 ...