题目连接

  • 题意:

    给定一个无向图,每一个边有两个属性。长度和一个字母‘L',’O',‘V’。‘E'中的一个。从1点開始到达n点,每次必须依照L -> O -> V -> E -> ... -> E的顺序。到达终点时候必须经过E边
  • 分析:

    对于这样的对边的限制,比較简单的方法是将一个点拆成若干个点。由于经过’L'到达点p的状态和经过‘O'到达点p的状态时不一样的,第一个之后仅仅能经过’O'边。而第二个仅仅能经过‘V'边,所以经过不同的边到达同一个点的时候相应的状态应该分开。也就是将点拆分成四个点。分别表示经过四种边到达p点。

  • 注意:

    图能够有自环。也能够仅仅有一个点

    路径必须至少有一个LOVE

    路径长度尽可能小,长度若相等,那么LOVE的数量尽可能多
Dijkstra方法:(一个点的时候直接特判。避免不必要的麻烦)
const LL INF = 1e18;
const int MAXV = 10000; struct Edge
{
LL from, to, dist;
}; struct HeapNode
{
LL d, u, num;
bool operator < (const HeapNode& rhs) const
{
return d > rhs.d;
}
}; struct Dijkstra
{
int n; //n:点数 m:暂时变量
vector<Edge> edges; //存储全部的边
vector<int> G[MAXV];//每一个点的全部相邻边序号
bool done[MAXV]; // 是否已永久标号
LL d[MAXV]; // s起点到各个点的距离
LL num[MAXV]; void init(int n)
{
this->n = n;
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int dist)
{
G[from].push_back(edges.size());
edges.push_back((Edge) { from, to, dist });
} void dijkstra(int s)
{
priority_queue<HeapNode> Q;
for(int i = 0; i < n; i++) d[i] = INF;
CLR(num, 0);
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push((HeapNode) { 0, s, 0 });
while(!Q.empty())
{
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if(done[u]) continue;
done[u] = true;
for(int i = 0; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if (d[e.to] == d[u] + e.dist)
num[e.to] = max(num[e.to], num[x.u] + 1);
if(d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
num[e.to] = num[x.u] + 1;
Q.push((HeapNode) { d[e.to], e.to, num[e.to] });
}
}
}
}
} dij; LL chk[4]; int main()
{
int T;
RI(T);
FE(kase, 1, T)
{
REP(i, 4) chk[i] = INF;
int n, m, u, v, d, op;
char type;
RII(n, m);
dij.init(n << 2);
REP(i, m)
{
scanf("%d%d%d %c", &u, &v, &d, &type);
u--; v--;
if (type == 'L') op = 0;
else if (type == 'O') op = 1;
else if (type == 'V') op = 2;
else op = 3;
chk[op] = min(chk[op], (LL)d);
dij.AddEdge(u + (op + 3) % 4 * n, v + op * n, d);
dij.AddEdge(v + (op + 3) % 4 * n, u + op * n, d);
}
printf("Case %d: ", kase);
if (n == 1)
{
REP(i, 4)
if (chk[i] == INF)
{
puts("Binbin you disappoint Sangsang again, damn it!");
goto end;
}
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
, chk[0] + chk[1] + chk[2] + chk[3], 1);
end:;
}
else
{
dij.dijkstra(3 * n);
if (dij.d[4 * n - 1] == INF)
puts("Binbin you disappoint Sangsang again, damn it!");
else
{
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %I64d LOVE strings at last.\n"
, dij.d[4 * n - 1], dij.num[4 * n - 1] / 4);
}
}
}
return 0;
}




spfa方法:(一个点也是特判,加点方式与Dijkstra同样)
const LL INF = 1e18;
const int MAXV = 10000; struct Edge
{
int from, to, dist;
}; struct SPFA
{
int n;
LL d[MAXV];
int num[MAXV];
vector<Edge> edges;
vector<int> G[MAXV];
bool inq[MAXV];
void init(int n)
{
this->n = n;
edges.clear();
REP(i, n)
G[i].clear();
}
void AddEdge(int from, int to, int dist)
{
G[from].push_back(edges.size());
edges.push_back((Edge) {from, to, dist});
}
void spfa(int s)
{
queue<int> q;
CLR(inq, false);
CLR(num, 0);
REP(i, n) d[i] = INF;
d[s] = 0;
q.push(s); inq[s] = true;
while (!q.empty())
{
int u = q.front();
q.pop(); inq[u] = false;
REP(i, G[u].size())
{
Edge& e = edges[G[u][i]];
if (d[e.to] == d[u] + e.dist && num[u] + 1 > num[e.to])
{
num[e.to] = num[u] + 1;
if (!inq[e.to])
{
q.push(e.to);
inq[e.to] = true;
}
}
if(d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
num[e.to] = num[u] + 1;
if (!inq[e.to])
{
q.push(e.to);
inq[e.to] = true;
}
}
}
}
}
} spfa; LL chk[4]; int main()
{
int T;
RI(T);
FE(kase, 1, T)
{
REP(i, 4) chk[i] = INF;
int n, m, u, v, d, op;
char type;
RII(n, m);
spfa.init(n << 2);
REP(i, m)
{
scanf("%d%d%d %c", &u, &v, &d, &type);
u--; v--;
if (type == 'L') op = 0;
else if (type == 'O') op = 1;
else if (type == 'V') op = 2;
else op = 3;
chk[op] = min(chk[op], (LL)d);
spfa.AddEdge(u + (op + 3) % 4 * n, v + op * n, d);
spfa.AddEdge(v + (op + 3) % 4 * n, u + op * n, d);
}
printf("Case %d: ", kase);
if (n == 1)
{
REP(i, 4)
if (chk[i] == INF)
{
puts("Binbin you disappoint Sangsang again, damn it!");
goto end;
}
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
, chk[0] + chk[1] + chk[2] + chk[3], 1);
end:;
}
else
{
spfa.spfa(3 * n);
if (spfa.d[4 * n - 1] == INF)
puts("Binbin you disappoint Sangsang again, damn it!");
else
{
printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
, spfa.d[4 * n - 1], spfa.num[4 * n - 1] / 4);
}
}
}
return 0;
}




顺便弄一些自己的測试数据。方便查错。

4 4

1 2 1 L

2 1 1 O

1 3 1 V

3 4 1 E

ans:4, 1





4 4

1 2 1 L

2 3 1 O

3 4 1 V

4 1 1 E

ans:no





12  12

1 5 10 L

5 6 10 O

6 7 10 V

7 12 10 E

1 2 1 L

2 3 1 O

3 4 1 V

4 8 1 E

8 9 1 L

9 10 1 O

10 11 1 V

11 12 33 E

ans:40, 2





12  12

1 5 10 L

5 6 10 O

6 7 10 V

7 12 10 E

1 2 1 L

2 3 1 O

3 4 1 V

4 8 1 E

8 9 1 L

9 10 1 O

10 11 1 V

11 12 34 E

ans:40, 1





1 4

1 1 1 L

1 1 1 O

1 1 1 V

1 1 1 E

ans:4, 1





2 8

1 1 2 L

1 1 1 O

1 1 1 V

1 1 1 E

1 2 3 L

2 1 1 O

1 2 1 V

2 1 1 E

ans:5, 1





1 3

1 1 1 L

1 1 1 O

1 1 1 E

ans:no





11 11

1 2 1 L

2 3 1 O

3 4 348 V

4 11 1000 E

1 5 50 L

5 6 50 O

6 7 50 V

7 8 50 E

8 9 50 L

9 10 50 O

10 4 50 V

ans:1350 2

As long as Binbin loves Sangsang的更多相关文章

  1. HDU 4360 As long as Binbin loves Sangsang spfa

    题意: 给定n个点m条边的无向图 每次必须沿着LOVE走,到终点时必须是完整的LOVE,且至少走出一个LOVE, 问这样情况下最短路是多少,在一样短情况下最多的LOVE个数是多少. 有自环. #inc ...

  2. 2012 Multi-University #7

    最短路+拆点 A As long as Binbin loves Sangsang 题意:从1走到n,每次都是LOVE,问到n时路径是连续多个"LOVE"的最短距离.秀恩爱不想吐槽. 分析:在普通的最 ...

  3. 【转】最短路&差分约束题集

    转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...

  4. 8-12-COMPETITION

    链接:最短路 A.HDU 2544    最短路 算是最基础的题目了吧.............我采用的是Dijkstra算法....... 代码: #include <iostream> ...

  5. 2012 Multi-University Training Contest 7

    2012 Multi-University Training Contest 7 A.As long as Binbin loves Sangsang B.Dead or alive C.Dragon ...

  6. 转载 - 最短路&差分约束题集

    出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548    A strange lift基础最短路(或bfs)★ ...

  7. Microsoft Loves Linux

    微软新任CEO纳德拉提出的“Microsoft Loves Linux”,并且微软宣布.NET框架的开源,近期Microsoft不但宣布了Linux平台的SQL Server,还宣布了Microsof ...

  8. 5806 NanoApe Loves Sequence Ⅱ(尺取法)

    传送门 NanoApe Loves Sequence Ⅱ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/131072 K ...

  9. 5805 NanoApe Loves Sequence(想法题)

    传送门 NanoApe Loves Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/131072 K ( ...

随机推荐

  1. python 默认编码( UnicodeDecodeError: 'ascii' codec can't decode)

    python在安装时,默认的编码是ascii,当程序中出现非ascii编码时,python的处理常常会报这样的错UnicodeDecodeError: 'ascii' codec can't deco ...

  2. Servlet过滤器——异常捕获过滤器

    1.概述 介绍如何实现异常捕获过滤器. 2.技术要点 本实例主要是在过滤器Filter的doFilter()方法中,对执行过滤器链的chain的doFilter()语句处添加try…catch异常捕获 ...

  3. Ubuntu下装QQ2012,让linux小白们不怕脱离windows

    嘿嘿,很多人可能跟我一样,QQ上同学群里会通知一些事项,所以我们希望可以在linux下开QQ,但是QQ官网做的QQ For Linux, 实在是烂的不行 那么怎么在linux下装我们平时在window ...

  4. OSX: 使用命令行对FileVault2分区恢复

    FileVault 2必须有Recovery HD分区,因为它依赖于它作为系统初启动.如果今后什么时候或者误操作删除了Recovery HD分区,那么你的机器就无法启动鸟. 是否使用苹果的办法重新获得 ...

  5. 控制台程序的参数解析类库 CommandLine

    C#控制台程序的参数解析类库 CommandLine简单使用说明 前言 C#开发的控制台程序,默认接收string[] args参数.如果有多个参数需要输入时,可以按照顺序依次输入:但如果有些参数不是 ...

  6. 运行yum报错Error: Cannot retrieve metalink for reposit

    http://www.netpc.com.cn/593.html 运行yum报错Error: Cannot retrieve metalink for reposit 今天给Centos通过rpm - ...

  7. Delphi中使用GDI+进行绘图(2)

    2)使用IGDIPlus接口 (1)下载安装所需软件 可以在以下地址下载IGDI+最新的安装程序. http://www.mitov.com/products/igdi+ www.igdiplus.o ...

  8. 线段树菜鸟一题+归并排序【求逆序数】POJ2299

    题目链接:http://poj.org/problem?id=2299 归并排序解法链接:http://blog.csdn.net/lyy289065406/article/details/66473 ...

  9. Oracle 10g AND Oracle 11g手工建库案例--Oracle 11g

    Oracle 10g AND Oracle 11g手工建库案例--Oracle 11g 系统环境: 操作系统: RedHat EL6 Oracle:  Oracle 10g and Oracle 11 ...

  10. find . -iname "*.jpg"|xargs -i mv {} .;for i in `ls`; do mv -f $i `echo $i | sed 's/JPG/jpg/'`; done

    find . -iname "*.jpg"|xargs -i mv {} .;for i in `ls`; do mv -f $i `echo $i | sed 's/JPG/jp ...