Training little cats
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 9613   Accepted: 2296

Description

Facer's pet cat just gave birth to a brood of little cats. Having considered the health of those lovely cats, Facer decides to make the cats to do some exercises. Facer has well designed a set of moves for his cats. He is now asking you to supervise the
cats to do his exercises. Facer's great exercise for cats contains three different moves:

g i : Let the ith cat take a peanut.

e i : Let the ith cat eat all peanuts it have.

s i j : Let the ith cat and jth cat exchange their peanuts.

All the cats perform a sequence of these moves and must repeat it m times! Poor cats! Only Facer can come up with such embarrassing idea. 

You have to determine the final number of peanuts each cat have, and directly give them the exact quantity in order to save them.

Input

The input file consists of multiple test cases, ending with three zeroes "0 0 0". For each test case, three integers nm and k are given firstly, where n is the number of cats and k is the length of the move
sequence. The following k lines describe the sequence.

(m≤1,000,000,000, n≤100, k≤100)

Output

For each test case, output n numbers in a single line, representing the numbers of peanuts the cats have.

Sample Input

3 1 6
g 1
g 2
g 2
s 1 2
g 3
e 2
0 0 0

Sample Output

2 0 1

Source


题目大意:
有N仅仅猫,K次操作(得花生、吃花生、交换花生),反复M次。

问最后每仅仅猫各有多少花生剩余。


解题思路:
这道题目的巧妙之处就是构造单位矩阵。从而实现三种操作。


之后便能用矩阵高速幂了。

另外还有两个trick。
1. 由于矩阵的乘法是O(N^3)。复杂度高。这道题直接搞会T。而我们能够发现,矩阵乘法都是稀疏矩阵,稀疏矩阵乘法有优化。
/*
稀疏矩阵乘法优化
*/
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
if (!a[i][j]) continue; //稀疏矩阵乘法优化
for (int k = 0; k < b.m; k++)
tmp.a[i][k] += a[i][j] * b.a[j][k];
}

2. 尽管M,N,K都是 int 范围的,可是操作之后,每仅仅猫的花生数量会超 int。


代码:
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define For(i, n) for (int i = 0; i < n; i++)
typedef long long ll;
using namespace std;
const int maxn = 110;
const int maxm = 110;
const int mod = 10000;
struct Matrix {
int n, m;
ll a[maxn][maxm];
void clear() {
n = m = 0;
memset(a, 0, sizeof(a));
}
Matrix operator * (const Matrix &b) const {
Matrix tmp;
tmp.clear();
tmp.n = n; tmp.m = b.m;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
if (!a[i][j]) continue; //稀疏矩阵乘法优化
for (int k = 0; k < b.m; k++)
tmp.a[i][k] += a[i][j] * b.a[j][k];
}
return tmp;
}
};
int n, k, m;
void init(int n, Matrix &I) {
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
I.a[i][j] = 0LL;
}
I.a[i][i] = 1LL;
}
I.n = I.m = n + 1; }
Matrix Matrix_pow(Matrix A, int k) {
Matrix res;
init(n, res);
while(k) {
if (k & 1) res = res * A;
k >>= 1;
A = A * A;
}
return res;
}
int main () {
Matrix A, I, res;
while(scanf("%d%d%d", &n, &m, &k)) {
if (m == 0 && n == 0 && k == 0) {
break;
}
A.clear();
A.n = n + 1; A.m = 1;
A.a[n][0] = 1LL;
char ch;
int u, v;
init(n, res);
while(k--) {
init(n, I);
getchar();
scanf("%c", &ch);
if (ch == 'g') {
scanf("%d", &u);
I.a[u - 1][n] = 1LL;
}
if (ch == 's') {
scanf("%d%d", &u, &v);
I.a[u - 1][u - 1] = 0LL; I.a[u - 1][v - 1] = 1LL;
I.a[v - 1][v - 1] = 0LL; I.a[v - 1][u - 1] = 1LL;
}
if (ch == 'e') {
scanf("%d", &u);
I.a[u - 1][u - 1] = 0LL;
}
res = I * res; //每次操作时。I应该乘在前面,由于矩阵乘法没有交换律
}
Matrix tmp = Matrix_pow(res, m);
tmp = tmp * A;
for (int i = 0; i < n; i++) {
printf("%lld ", tmp.a[i][0]);
}
cout<<endl;
}
return 0;
}

上述图片来自:http://blog.csdn.net/magicnumber/article/details/6217602

版权声明:本文博主原创文章,博客,未经同意不得转载。

[POJ 3735] Training little cats (结构矩阵、矩阵高速功率)的更多相关文章

  1. poj 3735 Training little cats(构造矩阵)

    http://poj.org/problem?id=3735 大致题意: 有n仅仅猫,開始时每仅仅猫有花生0颗,现有一组操作,由以下三个中的k个操作组成: 1. g i 给i仅仅猫一颗花生米 2. e ...

  2. 矩阵快速幂 POJ 3735 Training little cats

    题目传送门 /* 题意:k次操作,g:i猫+1, e:i猫eat,s:swap 矩阵快速幂:写个转置矩阵,将k次操作写在第0行,定义A = {1,0, 0, 0...}除了第一个外其他是猫的初始值 自 ...

  3. POJ 3735 Training little cats(矩阵快速幂)

    Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11787 Accepted: 2892 ...

  4. POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13488   Accepted:  ...

  5. POJ 3735 Training little cats(矩阵乘法)

    [题目链接] http://poj.org/problem?id=3735 [题目大意] 有一排小猫,给出一系列操作,包括给一只猫一颗花生, 让某只猫吃完所有的花生以及交换两只猫的花生, 求完成m次操 ...

  6. POJ 3735 Training little cats 矩阵快速幂

    http://poj.org/problem?id=3735 给定一串操作,要这个操作连续执行m次后,最后剩下的值. 记矩阵T为一次操作后的值,那么T^m就是执行m次的值了.(其实这个还不太理解,但是 ...

  7. poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化

    题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮, ...

  8. poj 3735 Training little cats(矩阵快速幂,模版更权威,这题数据很坑)

    题目 矩阵快速幂,这里的模版就是计算A^n的,A为矩阵. 之前的矩阵快速幂貌似还是个更通用一些. 下面的题目解释来自 我只想做一个努力的人 @@@请注意 ,单位矩阵最初构造 行和列都要是(猫咪数+1) ...

  9. POJ 3735 Training little cats

    题意 维护一个向量, 有三种操作 将第\(i\)个数加1 将第\(i\)个数置0 交换第\(i\)个数和第\(j\)个数 Solution 矩阵乘法/快速幂 Implementation 我们将向量写 ...

随机推荐

  1. 隐藏AutoCompleteTextView下拉框的滚动条

    最近做项目需要用到AutoCompleteTextView这个控件,而其下拉框的滚动条有点难看,于是想去掉.走了些弯路,终于弄通了. 首先先介绍一种不靠谱的方法:反射机制 为什么会有人想到用这个呢? ...

  2. [置顶] 单键模式的C++描述

    设计模式-单键(Signelton):其实单键的设计模式说来很简单,说的直白一点就是程序运行过程中保证只有一个实例在运行而已.在软件系统中,经常有这样一些特殊的类,必须保证它们在系统中只存在一个实例, ...

  3. MD5加密以及验证加密-加盐

    加密与解密算法: /// <summary> /// 签名字符串 32位 /// </summary> /// <param name="input" ...

  4. ALV前导零的问题

    ALV的IT_FIELDCAT参数中L_ZERO 选项置位的话,对NUM类型的前导0是可以输出的,但是有个很重要的前提条件,NO_ZERO不可以置位,否则L_ZERO是失效的.

  5. How to find configuration file MySQL uses?(转)

    http://www.dbasquare.com/2012/04/01/how-to-find-mysql-configuration-file/ A customer called me today ...

  6. ios23- 文件下载(同步和异步)

    1.第一步:创建一个单例视图 #import <UIKit/UIKit.h> @interface ios23_downViewController : UIViewController& ...

  7. ORACLE 安装Oracle12遇到的问题

    0.全然卸载Oracle10(Windows) 在Windows下多次安装Oracle会造成混乱.重装Oracle的话一定先要干净卸载曾经的Oracle. 一.有必要时先备份 二.卸载步骤 1.用DB ...

  8. 联系人数据库设计之AbstractContactsProvider

    个人见解,欢迎交流. 联系人数据库设计,源代码下载请自行去android官网下载. package com.android.providers.contacts; import android.con ...

  9. NET MVC RazorEngine 解析模板生成静态页

    ASP.NET MVC 解析模板生成静态页一(RazorEngine) 简述 Razor是ASP.NET MVC 3中新加入的技术,以作为ASPX引擎的一个新的替代项.在早期的MVC版本中默认使用的是 ...

  10. poj 3450 Corporate Identity

    题目链接:http://poj.org/problem?id=3450 题目分类:后缀数组 题意:求n个串的最长公共字串(输出字串) //#include<bits/stdc++.h> # ...