hdu1824(two-sat)
传送门:Let's go home
题意:有n个队伍要回家,但是每队必须留下一人,而且m个限制,a留下,b必须回家,问能否在限制条件下每队留下一人。
分析:将每个队的队长和两个队员当成i和i';然后对于每个限制a,b,连边a->b'和b->a';建好图后tarjan缩点判断每个强连通内是否存在矛盾[i,i']即可。
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 2010
#define FILL(a,b) (memset(a,b,sizeof(a)))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
struct edge
{
int v,next;
edge() {}
edge(int v,int next):v(v),next(next) {}
} e[N*N/];
int n,m,scc,step,top,tot;
int head[N],dfn[N],low[N],belong[N],Stack[N];
bool instack[N];
void init()
{
tot=;step=;
scc=;top=;
FILL(head,-);
FILL(dfn,);
FILL(low,);
FILL(instack,false);
}
void addedge(int u,int v)
{
e[tot]=edge(v,head[u]);
head[u]=tot++;
}
void tarjan(int u)
{
int v;
dfn[u]=low[u]=++step;
Stack[top++]=u;
instack[u]=true;
for(int i=head[u]; ~i; i=e[i].next)
{
v=e[i].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u])
{
scc++;
do
{
v=Stack[--top];
instack[v]=false;
belong[v]=scc;
}
while(v!=u);
}
} void solve()
{
for(int i=; i<*n; i++)
if(!dfn[i])tarjan(i);
bool flag=true;
for(int i=; i<n; i++)
{
if(belong[i<<]==belong[i<<^])
{
flag=false;
break;
}
}
if(flag)puts("yes");
else puts("no");
}
map<int,int>mp;
int main()
{
int a,b,c,u,v;
while(scanf("%d%d",&n,&m)>)
{
init();mp.clear();
for(int i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
mp[a]=*i;mp[b]=*i+;mp[c]=*i+;
}
for(int i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
addedge(mp[u],mp[v]^);
addedge(mp[v],mp[u]^);
}
solve();
}
}
hdu1824(two-sat)的更多相关文章
- 多边形碰撞 -- SAT方法
检测凸多边形碰撞的一种简单的方法是SAT(Separating Axis Theorem),即分离轴定理. 原理:将多边形投影到一条向量上,看这两个多边形的投影是否重叠.如果不重叠,则认为这两个多边形 ...
- POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- 2—sat
模型的解决方法看论文<利用对称性解决2-SAT问题> HDU1814 :难度1.5 HDU1824: 难度 2 HDU1815: 难度3 HDU1816: 对于每两个人,二选一HDU181 ...
- Map Labeler POJ - 2296(2 - sat 具体关系建边)
题意: 给出n个点 让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...
- 学习笔记(two sat)
关于two sat算法 两篇很好的论文由对称性解2-SAT问题(伍昱), 赵爽 2-sat解法浅析(pdf). 一些题目的题解 poj 3207 poj 3678 poj 3683 poj 3648 ...
- LA 3211 飞机调度(2—SAT)
https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...
- HIT 1917 2—SAT
题目大意:一国有n个党派,每个党派在议会中都有2个代表, 现要组建和平委员会,要从每个党派在议会的代表中选出1人,一共n人组成和平委员会. 已知有一些代表之间存在仇恨,也就是说他们不能同时被选为和平委 ...
- 2 - sat 模板(自用)
2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一 POJ 3207 Ikki's Story IV ...
- SAT考试里最难的数学题? · 三只猫的温暖
问题 今天无意中在Quora上看到有人贴出来一道号称是SAT里最难的一道数学题,一下子勾起了我的兴趣.于是拿起笔来写写画画,花了差不多十五分钟搞定.觉得有点意思,决定把解题过程记下来.原帖的图太小,我 ...
- 世界碰撞算法原理和总结(sat gjk)
序言 此文出于作者的想法,从各处文章和论文中,总结和设计项目中碰撞结构处理方法.如有其它见解,可以跟作者商讨.(杨子剑,zijian_yang@yeah.net). 在一个世界中,有多个物体,物体可以 ...
随机推荐
- 实现浏览器遗漏的原件 jQuery.selectCheckbox
工作中遇到了一个下拉需要实现checkbox的效果,如下图 或许网上已经有实现了,但简单的功能自己实现就好了, 结构 <div class="form-control-wrap&quo ...
- 把linux可执行程序做成一个服务[转]
转自:http://www.2cto.com/os/201202/121249.html 在linux系统启动的时候,我们可以看到很多服务性程序一个接一个的被启动(就是那些后面有一个兰色[OK]的行) ...
- Spring Boot,Spring Data JPA多数据源支持
1 配置文件 wisely.primary.datasource.driverClassName=oracle.jdbc.OracleDriver wisely.primary.datasource. ...
- uva 11212
非原创!!! 原作者地址:http://www.hardbird.net/?p=238
- 找工作笔试面试那些事儿(16)---linux相关知识点(1)
linux这部分的知识倒不是笔试面试必考的内容,不过现在很多公司开发环境都在linux系统下,一些简单的知识还是需要了解一下的,笔试面试中万一碰到了,也不会措手不及.作为菜硕的我,又因为读研期间的项目 ...
- ExtJs4 笔记(12) Ext.toolbar.Toolbar 工具栏、Ext.toolbar.Paging 分页栏、Ext.ux.statusbar.StatusBar 状态栏
本篇讲解三个工具栏控件.其中Ext.toolbar.Toolbar可以用来放置一些工具类操控按钮和菜单,Ext.toolbar.Paging专门用来控制数据集的分页展示,Ext.ux.statusba ...
- 一种H.264高清视频的无参考视频质量评价算法(基于QP和跳过宏块数)
本文记录一种无参考视频质量评价算法.这是我们自己实验室前两年一个师姐做的,算法还是比较准确的,在此记录一下. 注意本算法前提是高清视频.而且是H.264编码方式. 该方法主要使用两个码流里面的参数进行 ...
- javascript创建类的6种方式
javascript创建类的7种方式 一 使用字面量创建 1.1 示例 var obj={}; 1.2 使用场景 比较适用于临时构建一个对象,且不关注该对象的类型,只用于临时封装一次数据,且不适合代码 ...
- Windows Azure中的Affinity Group
Affinity Group: (近亲组?个人认为直译为近亲组更好一些,不知道官方是怎么翻译的). 如何创建Affinity Group 1. 进入https://manage.windowsazur ...
- gcc manual
$ gcc --helpUsage: gcc [options] file...Options: -pass-exit-codes Exit with highest error c ...