Devu and Flowers lucas定理+容斥原理
Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.
Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7).
Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.
Input
The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).
The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).
Output
Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).
Example
2 3
1 3
2
2 4
2 2
1
3 5
1 3 2
3
Note
Sample 1. There are two ways of selecting 3 flowers: {1, 2} and {0, 3}.
Sample 2. There is only one way of selecting 4 flowers: {2, 2}.
Sample 3. There are three ways of selecting 5 flowers: {1, 2, 2}, {0, 3, 2}, and {1, 3, 1}.
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define mod 1000000007
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
ll qpow(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=;
}
return ans;
}
ll getc(ll a,ll b)
{
if(a<b)return ;
if(b>a-b)b=a-b;
ll s1=,s2=;
for(ll i=;i<b;i++)
{
s1=s1*(a-i)%mod;
s2=s2*(i+)%mod;
}
return s1*qpow(s2,mod-)%mod;
}
ll lucas(ll n,ll k)
{
if(k==)return ;
return getc(n%mod,k%mod)*lucas(n/mod,k/mod)%mod;
}
int n;
ll s,f[];
ll solve()
{
ll ans=;
for(int i=;i<(<<n);i++)
{
ll sign=,sum=s;
for(int j=;j<n;j++)
{
if(i&(<<j))
{
sum-=f[j]+;
sign*=-;
}
}
if(sum<)continue;
ans+=sign*lucas(sum+n-,n-);
ans%=mod;
}
return (ans+mod)%mod;
}
int main()
{
cin>>n>>s;
for(int i=;i<n;i++)
cin>>f[i];
printf("%lld\n",solve());
return ;
}
Devu and Flowers lucas定理+容斥原理的更多相关文章
- 2018.10.31 bzoj4737: 组合数问题(lucas定理+容斥原理+数位dp)
传送门 这是一道让我重新认识lucaslucaslucas的题. 考虑到lucaslucaslucas定理: (nm)≡(n%pm%p)∗(npmp)\binom n m \equiv \binom ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- codeforces 451E. Devu and Flowers 容斥原理+lucas
题目链接 给n个盒子, 每个盒子里面有f[i]个小球, 然后一共可以取sum个小球.问有多少种取法, 同一个盒子里的小球相同, 不同盒子的不同. 首先我们知道, n个盒子放sum个小球的方式一共有C( ...
- Codeforces 451E Devu and Flowers(容斥原理)
题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...
- Codeforces Round #258 E Devu and Flowers --容斥原理
这题又是容斥原理,最近各种做容斥原理啊.当然,好像题解给的不是容斥原理的方法,而是用到Lucas定理好像.这里只讲容斥的做法. 题意:从n个容器中总共取s朵花出来,问有多少种情况.其中告诉你每个盒子中 ...
- BZOJ3129/洛谷P3301方程(SDOI2013)容斥原理+扩展Lucas定理
题意:给定方程x1+x2+....xn=m,每个x是正整数.但是对前n1个数做了限制x1<=a1,x2<=a2...xn1<=an1,同时对第n1+1到n1+n2个数也做了限制xn1 ...
- 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...
- Codeforces 451 E. Devu and Flowers(组合数学,数论,容斥原理)
传送门 解题思路: 假如只有 s 束花束并且不考虑 f ,那么根据隔板法的可重复的情况时,这里的答案就是 假如说只有一个 f 受到限制,其不合法时一定是取了超过 f 的花束 那么根据组合数,我们仍然可 ...
- Lucas定理及其应用
Lucas定理这里有详细的证明. 其实就是针对n, m很大时,要求组合数C(n, m) % p, 一般来说如果p <= 10^5,那么就能很方便的将n,m转化为10^5以下这样就可以按照乘法逆元 ...
随机推荐
- [BZOJ2330][SCOI2011]糖果 差分约束系统+最短路
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2330 类似于题目中这种含有不等式关系,我们可以建立差分约束系统来跑最长路或最短路. 对于一 ...
- 平衡图片负载,提升web站点访问体验
最近给分公司做官方网站,内网测试一切ok,发布至云端后,体验惊人——公司外网网速渣渣(十几k~几十k),更加要命的是,网站的高清图,根本就加载不出来,几秒,十几秒过去了,仍然在转圈圈,如下图... 于 ...
- CCF|公共钥匙盒|Java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = ...
- mysql 判断null 和 空字符串
1.在mysql中null 不能使用任何运算符与其他字段或者变量(函数.存储过程)进行运算.若使用运算数据就可能会有问题. 2.对null 的判断: 创建一个user表:id 主健 name 可以为空 ...
- spring-mvc hello world (1)
我学习一个程序,都是从DEMO开始的. 先不了解SPRING-MVC的原理,但一些小的概念还是需要了解的.由于之前有过SSH的工程经验,故基本的东东,不在叙述. 1.准备环境 JAR包:
- 迅为IMX6UL开发板
迅为iMX6UL开发板采用核心板加底板形式,核心板使用邮票孔方式连接,牢固耐用.处理器ARM®Cortex®-A7内核,运行速度高达528 MHz.512MDDR内存,8G EMMC存储,板截双网口, ...
- 迅为7寸Android嵌入式安卓触摸屏,工业一体机方案
嵌入式安卓触摸屏板卡介绍-工业级核心板: 嵌入式安卓触摸屏功能接口介绍: 品质保障: 核心板连接器:进口连接器,牢固耐用,国产连接器无法比拟(为保证用户自行设计的产品品质,购买核心板用户可免费赠送底板 ...
- jquery 微信端 点击物理返回按钮,弹出提示框
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- convertquota - 把老的配额文件转换为新的格式
总览 (SYNOPSIS) convertquota [ -ug ] filesystem 描述 (DESCRIPTION) convertquota 把老的配额文件 quota.user 和 quo ...
- Ubuntu-11.10中 vim和Gedit打开html文件中文乱码问题
解决vim中文乱码方法: 打开/etc/vim/vimrc 添加代码: set fileencodings=utf-8,gb2312,gbk,gb18030 set t ...