二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=50005;
int t,k,mb[N],q[N],tot;
bool v[N];
int read()
{
int r=0;
char p=getchar();
while(p>'9'||p<'0')
p=getchar();
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r;
}
bool ok(long long x)
{
long long sum=0ll;
for(int i=1;i*i<=x;i++)
sum+=x/(i*i)*mb[i];
return sum>=k;
}
int main()
{
mb[1]=1;
for(int i=2;i<=50000;i++)
{
if(!v[i])
{
q[++tot]=i;
mb[i]=-1;
}
for(int j=1;j<=tot&&i*q[j]<=50000;j++)
{
int k=i*q[j];
v[k]=1;
if(i%q[j]==0)
{
mb[k]=0;
break;
}
mb[k]=-mb[i];
}
}
t=read();
while(t--)
{
k=read();
long long l=k,r=2e9,ans;
while(l<=r)
{
long long mid=(l+r)>>1;
if(ok(mid))
r=mid-1,ans=mid;
else
l=mid+1;
}
printf("%lld\n",ans);
}
return 0;
}

bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】的更多相关文章

  1. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  2. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  3. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  4. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

  5. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  6. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  7. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  8. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  9. bzoj 2440: [中山市选2011]完全平方数

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

随机推荐

  1. 翻译:A Tutorial on the Device Tree (Zynq) -- Part II

    A Tutorial on the Device Tree (Zynq) -- Part II 设备树结构 Zynq的设备树如下: /dts-v1/; / { #address-cells = < ...

  2. Kubernetes实战阅读笔记--1、介绍

    1.业界根据云计算提供服务资源的类型将其划分为三大类: 基础设施即服务(Infrastructure-as-a-Service,IaaS).平台即服务(Platform-as-a-Service,Pa ...

  3. python dictionary的遍历

    d = {'x':1, 'y':3, 'z':2} for k in d:    print d[k] 直接遍历k in d的话,遍历的是dictionary的keys. 2 字典的键可以是任何不可变 ...

  4. [转]GPS经纬度的表示方法及换算

    想要认识GPS中的经纬度,就必须先了解GPS,知道经纬度的来源: 1. GPS系统组成 GPS是 Gloabal Positioning System 的简称,意为全球定位系统,主要由地面的控制站.天 ...

  5. 主线程 view

    参考https://blog.csdn.net/u011001142/article/details/50912358

  6. Tomcat启动报:invalid LOC header (bad signature)的问题

    原因:这种一般是因为项目依赖的某个jar包损坏引起的, 解决办法: 1.右键项目,选择maven,更新(update maven project) 2.通过右击项目名 ->  Run as -& ...

  7. HDU 2746 Cyclic Nacklace

    Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  8. 织梦CMS被挂马特征汇总

    一.织梦CMS被挂马特征汇总 2013织梦CMS被挂马特征汇总.最近很多朋友反应后台多了几个系统管理员用户:service.spider等,而且自己之前的管理员用户登陆时候会提示用户名不存在.还有朋友 ...

  9. java停止线程

    本文将介绍jdk提供的api中停止线程的用法. 停止一个线程意味着在一个线程执行完任务之前放弃当前的操作,停止一个线程可以使用Thread.stop()方法,但是做好不要使用它,它是后继jdk版本中废 ...

  10. javascript 无刷新上传图片之原理

    刚开始我认为可以像ajax 那样获取到数据然后通过ajax 发送请求,后来发现浏览器为了客户端的安全默认并没有给javascript 这个权限.这个方法当然是行不同了.我看了好像开源的上传图片原理,当 ...