C. 雨天的尾巴

题目描述

N个点,形成一个树状结构。有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品。完成所有发放后,每个点存放最多的是哪种物品。

输入格式

第一行数字N,M
接下来N-1行,每行两个数字a,b,表示a与b间有一条边
再接下来M行,每行三个数字x,y,z.如题

输出格式

输出有N行
每i行的数字表示第i个点存放最多的物品是哪一种,如果有
多种物品的数量一样,输出编号最小的。如果某个点没有物品则输出0

样例

样例输入


样例输出


数据范围与提示

1<=N,M<=100000
1<=a,b,x,y<=N
1<=z<=10910^910​9​​

暴力能得50分呢……

树上操作首先会想到树剖和树上差分吧,这里只说差分;

离线处理,权值线段树维护每一个点的状态(每种物品出现次数及其最大值),对于每次操作,将x+1,y+1,LCA(x,y)-1,fa[LCA]-1最后dfs合并线段树统计答案即可。

注意合并(修改)叶子节点时最大值是加而不是取max。

这道题比较恶心的是卡内存,卡了我四节课…

如果线段树合并操作是建新节点的话会MLE,代码如下:

int merge(int x,int y)
{
if(!x||!y)return x+y;
int now=++cnt;
sum(now)=sum(x)+sum(y);
l(now)=merge(l(x),l(y));
r(now)=merge(r(x),r(y));
if(!l(x) && !r(x))maxn(now)=maxn(x)+maxn(y);
else maxn(now)=max( maxn(l(now)) , maxn(r(now)) );
return now;
}

但是显然不这样的话数据会出错(将y的子树同时变为x的子树,之后在合并x时会修改数据),但是其实并不需要让线段树最后是正确的,只需要在y数据发生错误之前记录答案即可。

标程

#include<iostream>
#include<cstdio>
#include<map>
#include<time.h>
#include<cstdlib>
#include<algorithm>
using namespace std;
struct edge
{
int u,v,next;
#define u(x) ed[x].u
#define v(x) ed[x].v
#define n(x) ed[x].next
}ed[];
int first[],num_e;
#define f(x) first[x]
int n,m,Q,fa[][],bin[],dep[];
int x[],y[],z[],z2[];
map<int,int> mp;
int mmp[];
int ans[]; struct tree
{
int l,r,sum,maxn;
#define l(x) tr[x].l
#define r(x) tr[x].r
#define sum(x) tr[x].sum
#define maxn(x) tr[x].maxn
}tr[];
int cnt,rt[]; int ask(int l,int r,int a)
{
if(sum(a)==)return ;
if(l==r)return l;
int mid=(l+r)>>;
if(maxn(l(a))>=maxn(r(a)))return ask(l,mid,l(a));
return ask(mid+,r,r(a));
}
void add(int &mark,int l,int r,int loc,int val)
{
if(!mark)mark=++cnt;
if(l==r){sum(mark)+=val;maxn(mark)+=val;return;}
int mid=(l+r)>>;
if(loc<=mid)add(l(mark),l,mid,loc,val);
else add(r(mark),mid+,r,loc,val);
sum(mark)=sum(l(mark))+sum(r(mark));
maxn(mark)=max( maxn(l(mark)) , maxn(r(mark)));
}
int merge(int x,int y)
{
if(!x||!y)return x+y;
l(x)=merge(l(x),l(y));
r(x)=merge(r(x),r(y));
sum(x)=sum(x)+sum(y);
if(!l(x) && !r(x))maxn(x)=maxn(x)+maxn(y);
else maxn(x)=max( maxn(l(x)) , maxn(r(x)) );
return x;
}
void dfs2(int x,int ffa);
inline int read();
int LCA(int x,int y);
void dfs(int x,int ffa);
inline void add_e(int u,int v);
signed main()
{
// freopen("4.in","r",stdin);
// freopen("out.txt","w",stdout); bin[]=;
for(int i=;i<=;i++)bin[i]=bin[i-]*;
n=read(),Q=read();
int ta,tb;
for(int i=;i<n;i++)
{
ta=read(),tb=read();
add_e(ta,tb);
add_e(tb,ta);
}
for(int j=;j<=Q;j++)
x[j]=read(),y[j]=read(),z[j]=read(),z2[j]=z[j];
sort(z2+,z2+Q+);
m=unique(z2+,z2+Q+)-z2-;
for(int i=;i<=Q;i++)
{
int loc=lower_bound(z2+,z2+m+,z[i])-z2;
mp[z[i]]=loc;
mmp[loc]=z[i];
}
dfs(,);
for(int j=;j<;j++)
for(int i=;i<=n;i++)
fa[i][j]=fa[fa[i][j-]][j-];
mmp[]=;
for(int i=;i<=Q;i++)
{
int loc=mp[z[i]],
lca=LCA(x[i],y[i]),
ffa=fa[lca][];
add(rt[x[i]],,m,loc,);
add(rt[y[i]],,m,loc,);
add(rt[lca], ,m,loc,-);
if(ffa)
add(rt[ffa] ,,m,loc,-);
}
dfs2(,);
ans[]=ask(,m,rt[]);
for(int i=;i<=n;i++)
printf("%d\n",mmp[ans[i]]);
}
void dfs2(int x,int ffa)
{
for(int i=f(x);i;i=n(i))
if(v(i)!=ffa)
{
dfs2(v(i),x);
ans[v(i)]=ask(,m,rt[v(i)]);
rt[x]=merge(rt[x],rt[v(i)]);
}
}
inline int read()
{
int s=;char a=getchar();
while(a<''||a>'')a=getchar();
while(a>=''&&a<=''){s=s*+a-'';a=getchar();}
return s;
}
inline void add_e(int u,int v)
{
++num_e;
u(num_e)=u;
v(num_e)=v;
n(num_e)=f(u);
f(u)=num_e;
}
void dfs(int x,int ffa)
{
fa[x][]=ffa;
dep[x]=dep[ffa]+;
for(int i=f(x);i;i=n(i))
if(v(i)!=ffa)
dfs(v(i),x);
}
int LCA(int x,int y)
{
if(dep[x]>dep[y])swap(x,y);
while(dep[x]!=dep[y])
for(int i=;;i++)
if(dep[fa[y][i]]<dep[x])
{
y=fa[y][i-];
break;
}
if(x==y)return x;
while(fa[x][]!=fa[y][])
for(int i=;;i++)
if(fa[x][i]==fa[y][i])
{x=fa[x][i-],y=fa[y][i-];break;}
return fa[x][];
}

Bzoj 3307 雨天的尾巴(线段树合并+树上差分)的更多相关文章

  1. bzoj 3307: 雨天的尾巴 线段树合并

    题目大意: N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.问完成所有发放后,每个点存放最多的是哪种物品. 题解: 首先我们为每一个节 ...

  2. bzoj 3307: 雨天的尾巴【树剖lca+树上差分+线段树合并】

    这居然是我第一次写线段树合并--所以我居然在合并的时候加点结果WAWAWAMLEMLEMLE--!ro的时候居然直接指到la就行-- 树上差分,每个点建一棵动态开点线段树,然后统计答案的时候合并即可 ...

  3. BZOJ_3307_雨天的尾巴_线段树合并+树上差分

    BZOJ_3307_雨天的尾巴_线段树合并 Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后 ...

  4. [Vani有约会]雨天的尾巴 线段树合并

    [Vani有约会]雨天的尾巴 LG传送门 线段树合并入门好题. 先别急着上线段树合并,考虑一下这题的暴力.一看就是树上差分,对于每一个节点统计每种救济粮的数量,再一遍dfs把差分的结果统计成答案.如果 ...

  5. 【BZOJ3307】雨天的尾巴 线段树合并

    [BZOJ3307]雨天的尾巴 Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多 ...

  6. BZOJ3307雨天的尾巴——线段树合并

    题目描述 N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入 第一行数字N,M接下来N ...

  7. 雨天的尾巴(bzoj3307)(线段树合并+树上差分)

    \(N\)个点,形成一个树状结构.有\(M\)次发放,每次选择两个点\(x,y\) 对于\(x\)到\(y\)的路径上(含\(x,y\))每个点发一袋\(Z\)类型的物品.完成 所有发放后,每个点存放 ...

  8. bzoj3307 雨天的尾巴 题解(线段树合并+树上差分)

    Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后,每个点存放最多的是哪种物品. Input ...

  9. P4556 雨天的尾巴 线段树合并

    使用线段树合并,每个节点维护一棵权值线段树,下标为救济粮种类,区间维护数量最多的救济粮编号(下标).所以每个节点答案即为\(tre[rot[x]]\). 然后运用树上点的差分思想,对于分发路径\(u, ...

随机推荐

  1. center os 安装mysql5.6

    软件 MySQL-server-5.6.13-1.el6.x86_64.rpm MySQL-client-5.6.13-1.el6.x86_64.rpm 安装命令 rpm -ivh MySQL-ser ...

  2. bzoj 2815

    http://www.cnblogs.com/JS-Shining/archive/2013/01/12/2857429.html 题面 题解上写了用什么dominator tree,吓晕了,看了看, ...

  3. 适用于PHP初学者的学习线路和建议

    [导读] 这篇文章是围绕PHP的学习问题,之前介绍过<重磅资料!Github上的PHP资源汇总大全><深入探讨PHP类的封装与继承><PHP的学习规划建议>等对PH ...

  4. Linux 常用命令十一 ps

    一.ps命令 Linux中的ps命令是Process Status的缩写. ps命令用来列出系统中当前运行的那些进程.ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要 ...

  5. Codeforces 938D Buy a Ticket 【spfa优化】

    用到了网络流的思想(大概).新建一个源点s,所有边权扩大两倍,然后所有的点向s连边权为点权的无向边,然后以s为起点跑spfa(S什么L优化的),这样每个点到s的距离就是答案. 原因的话,考虑答案应该是 ...

  6. 【插件开发】—— 7 SWT布局详解,不能再详细了!

    前文回顾: 1 插件学习篇 2 简单的建立插件工程以及模型文件分析 3 利用扩展点,开发透视图 4 SWT编程须知 5 SWT简单控件的使用与布局搭配 6 SWT复杂空间与布局搭配 前面几篇都提到了S ...

  7. float(double)快速转换int的方法

    自己写一个软件渲染器的时候,无意中发现float转换int非常耗时,于是查阅文章,这才有了这个命题,以前不清楚还有这么个机制.网上看了很多文章,搜索到了一个数字6755399441055744,这个是 ...

  8. Service官方教程(5)后台服务发送通知、把服务变前台服务。

    1.Sending Notifications to the User (发送通知) Once running, a service can notify the user of events usi ...

  9. Android偏好设置(5)偏好设置界面显示多个分组,每个分组也有一个界面

    1.Using Preference Headers In rare cases, you might want to design your settings such that the first ...

  10. 413 Arithmetic Slices 等差数列划分

    如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列.例如,以下数列为等差数列:1, 3, 5, 7, 97, 7, 7, 73, -1, -5, -9以下数列不是等差数列. ...