1. 创建索引,修改索引,删除索引

//创建索引
PUT /my_index
{
"settings": {
"number_of_shards": ,
"number_of_replicas":
},
"mappings": {
"my_type": {
"properties": {
"my_field": {
"type": "text"
}
}
}
}
} //修改索引
PUT /my_index/_settings
{
"number_of_replicas":
} //删除索引
DELETE /my_index
DELETE /index_one,index_two
DELETE /index_*
DELETE /_all

2. 默认分词器standard

standard tokenizer:以单词边界进行切分
standard token filter:什么都不做
lowercase token filter:将所有字母转换为小写
stop token filer(默认被禁用):移除停用词,比如a the it等等

修改分词器设置:

启用english停用词token filter

PUT /my_index
{
"settings": {
"analysis": {
"analyzer": {
"es_std": {
"type": "standard",
"stopwords": "_english_"
}
}
}
}
}

3.内核--type底层数据结构

type,是一个index中用来区分类似的数据的,类似的数据但可能有不同的fields;
field的value,在底层的lucene中建立索引的时候,全部是opaque bytes类型,不区分类型的,因为lucene是没有type的概念的,在document中,实际上将type作为一个document的field来存储,即_type,es通过_type来进行type的过滤和筛选;
一个index中的多个type,实际上是放在一起存储的,因此一个index下,不能有多个type重名,而类型或者其他设置不同的,因为那样是无法处理的;

最佳实践,将类似结构的type放在一个index下,这些type应该有多个field是相同的;
假如说,你将两个type的field完全不同,放在一个index下,那么就每条数据都至少有一半的field在底层的lucene中是空值,会有严重的性能问题;

//底层存储,一个index下所有的field都会存储,对于不同type下的字段若不存在,则置为空;
{
"_type": "elactronic_goods",
"name": "geli kongtiao",
"price": 1999.0,
"service_period": "one year",
"eat_period": ""
} {
"_type": "fresh_goods",
"name": "aozhou dalongxia",
"price": 199.0,
"service_period": "",
"eat_period": "one week"
}

4. 定制dynamic策略和dynamic mapping策略

定制dynamic策略:

true:遇到陌生字段,就进行dynamic mapping;
false:遇到陌生字段,就忽略;
strict:遇到陌生字段,就报错;

dynamic mapping策略:

1)date_detection

默认会按照一定格式识别date,比如yyyy-MM-dd。但是如果某个field先过来一个2017-01-01的值,就会被自动dynamic mapping成date,后面如果再来一个"hello world"之类的值,就会报错。可以手动关闭某个type的date_detection,如果有需要,自己手动指定某个field为date类型。

PUT /my_index/_mapping/my_type
{
"date_detection": false
}

2)定制自己的dynamic mapping template(type level)

PUT /my_index
{
"mappings": {
"my_type": {
"dynamic_templates": [
{ "en": {
"match": "*_en",
"match_mapping_type": "string",
"mapping": {
"type": "string",
"analyzer": "english"
}
}}
]
}}}
PUT /my_index/my_type/
{
"title": "this is my first article"
}
PUT /my_index/my_type/
{
"title_en": "this is my first article"
} title没有匹配到任何的dynamic模板,默认就是standard分词器,不会过滤停用词,is会进入倒排索引,用is来搜索是可以搜索到的
title_en匹配到了dynamic模板,就是english分词器,会过滤停用词,is这种停用词就会被过滤掉,用is来搜索就搜索不到了

3)定制自己的default mapping template(index level)

PUT /my_index
{
"mappings": {
"_default_": {
"_all": { "enabled": false }
},
"blog": {
"_all": { "enabled": true }
}
}
}

5. 重建索引

一个field的设置是不能被修改的,如果要修改一个Field,那么应该重新按照新的mapping,建立一个index,然后将数据批量查询出来,重新用bulk api写入index中;批量查询的时候,建议采用scroll api,并且采用多线程并发的方式来reindex数据,每次scoll就查询指定日期的一段数据,交给一个线程即可;

1)一开始,依靠dynamic mapping,插入数据,但是些数据是2017-01-01这种日期格式的,所以title这种field被自动映射为了date类型,实际上它应该是string类型的;

2)当后期向索引中加入string类型的title值的时候,就会报错;如果此时想修改title的类型,是不可能的;

3)唯一的办法是进行reindex,也就是说,重新建立一个索引,将旧索引的数据查询出来,再导入新索引;

4)如果说旧索引的名字,是old_index,新索引的名字是new_index,终端java应用,已经在使用old_index在操作了,难道还要去停止java应用,修改使用的index为new_index,才重新启动java应用吗?这个过程中,就会导致java应用停机,可用性降低;所以说,给java应用一个别名,这个别名是指向旧索引的,java应用先用着,java应用先用goods_index alias来操作,此时实际指向的是旧的my_index;     PUT /my_index/_alias/goods_index

5)新建一个index,调整其title的类型为string;

6)使用scroll api将数据批量查询出来;采用bulk api将scoll查出来的一批数据,批量写入新索引;

POST /_bulk
{ "index": { "_index": "my_index_new", "_type": "my_type", "_id": "" }}
{ "title": "2017-01-02" }

7)反复循环6,查询一批又一批的数据出来,采取bulk api将每一批数据批量写入新索引

8)将goods_index alias切换到my_index_new上去,java应用会直接通过index别名使用新的索引中的数据,java应用程序不需要停机,零提交,高可用;

POST /_aliases
{
"actions": [
{ "remove": { "index": "my_index", "alias": "goods_index" }},
{ "add": { "index": "my_index_new", "alias": "goods_index" }}
]
}

9)直接通过goods_index别名来查询,GET /goods_index/my_type/_search

5.2 基于alias对client透明切换index
PUT /my_index_v1/_alias/my_index client对my_index进行操作
reindex操作,完成之后,切换v1到v2
POST /_aliases
{
"actions": [
{ "remove": { "index": "my_index_v1", "alias": "my_index" }},
{ "add": { "index": "my_index_v2", "alias": "my_index" }}
]
}

6. 倒排索引不可变的好处

(1)不需要锁,提升并发能力,避免锁的问题;
(2)数据不变,一直保存在os cache中,只要cache内存足够;
(3)filter cache一直驻留在内存,因为数据不变;
(4)可以压缩,节省cpu和io开销;

倒排索引不可变的坏处:每次都要重新构建整个索引;

7. document写入的内核级原理

(1)数据写入buffer缓冲和translog日志文件

(2)每隔一秒钟,buffer中的数据被写入新的segment file,并进入os cache,此时segment被打开并供search使用,不立即执行commit;--实现近实时;

数据写入os cache,并被打开供搜索的过程,叫做refresh,默认是每隔1秒refresh一次。也就是说,每隔一秒就会将buffer中的数据写入一个新的index segment file,先写入os cache中。所以,es是近实时的,数据写入到可以被搜索,默认是1秒。

(3)buffer被清空

(4)重复1~3,新的segment不断添加,buffer不断被清空,而translog中的数据不断累加

(5)当translog长度达到一定程度的时候,commit操作发生

(5-1)buffer中的所有数据写入一个新的segment,并写入os cache,打开供使用

(5-2)buffer被清空

(5-3)一个commit ponit被写入磁盘,标明了所有的index segment;会有一个.del文件,标记了哪些segment中的哪些document被标记为deleted了;

(5-4)filesystem cache中的所有index segment file缓存数据,被fsync强行刷到磁盘上

(5-5)现有的translog被清空,创建一个新的translog

//调整刷新的频率
PUT /my_index
{
"settings": {
"refresh_interval": "30s"
}
}

默认会在后台执行segment merge操作,在merge的时候,被标记为deleted的document也会被彻底物理删除;

每次merge操作的执行流程:

(1)选择一些有相似大小的segment,merge成一个大的segment;
(2)将新的segment flush到磁盘上去;
(3)写一个新的commit point,包括了新的segment,并且排除旧的那些segment;
(4)将新的segment打开供搜索;
(5)将旧的segment删除;

POST /my_index/_optimize?max_num_segments=1,尽量不要手动执行,让它自动默认执行;

Elasticsearch 索引管理和内核探秘的更多相关文章

  1. Elasticsearch -- 索引管理

    1.#获取当前索引 # curl -u elastic:changeme 'localhost:9200/_cat/indices?v' 2. #删除指定索引    # curl -XDELETE - ...

  2. 一文带您了解 Elasticsearch 中,如何进行索引管理(图文教程)

    欢迎关注笔者的公众号: 小哈学Java, 每日推送 Java 领域干货文章,关注即免费无套路附送 100G 海量学习.面试资源哟!! 个人网站: https://www.exception.site/ ...

  3. ElasticSearch权威指南学习(索引管理)

    创建索引 当我们需要确保索引被创建在适当数量的分片上,在索引数据之前设置好分析器和类型映射. 手动创建索引,在请求中加入所有设置和类型映射,如下所示: PUT /my_index { "se ...

  4. elasticsearch系列二:索引详解(快速入门、索引管理、映射详解、索引别名)

    一.快速入门 1. 查看集群的健康状况 http://localhost:9200/_cat http://localhost:9200/_cat/health?v 说明:v是用来要求在结果中返回表头 ...

  5. elasticsearch最全详细使用教程:入门、索引管理、映射详解、索引别名、分词器、文档管理、路由、搜索详解

    一.快速入门1. 查看集群的健康状况http://localhost:9200/_cat http://localhost:9200/_cat/health?v 说明:v是用来要求在结果中返回表头 状 ...

  6. ElasticSearch——Curator索引管理

    简介 curator 是一个官方的,可以管理elasticsearch索引的工具,可以实现创建,删除,段合并等等操作.详见官方文档 功能 curator允许对索引和快照执行许多不同的操作,包括: 从别 ...

  7. Elasticsearch索引容量管理实践【>>戳文章免费体验Elasticsearch服务30天】

    [活动]Elasticsearch Service免费体验馆>> Elasticsearch Service自建迁移特惠政策>>Elasticsearch Service新用户 ...

  8. Elasticsearch索引生命周期管理方案

    一.前言 在 Elasticsearch 的日常中,有很多如存储 系统日志.行为数据等方面的应用场景,这些场景的特点是数据量非常大,并且随着时间的增长 索引 的数量也会持续增长,然而这些场景基本上只有 ...

  9. Elasticsearch索引生命周期管理探索

    文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484130&idx=1&sn=454f199 ...

随机推荐

  1. 利用jenkins和docker实现持续交付

    利用jenkins和docker实现持续交付 一.什么是持续交付 让软件产品的产出过程在一个短周期内完成,以保证软件可以稳定.持续的保持在随时可以发布的状况.它的目标在于让软件的构建.测试与发布变得更 ...

  2. E20170505-ms

    respectively adv. 分别,各自,顺序 为,依次为 encryption n.加密 corresponding adj. 符合的,相应的,相关的 correspond v. 通信,符合, ...

  3. TP3.2单字母函数

    A方法 A方法用于在内部实例化控制器 调用格式:A(‘[项目://][分组/]模块’,’控制器层名称’) 最简单的用法: $User = A('User'); 表示实例化当前项目的UserAction ...

  4. 图论之最短路算法之SPFA算法

    SPFA(Shortest Path Faster Algorithm)算法,是一种求最短路的算法. SPFA的思路及写法和BFS有相同的地方,我就举一道例题(洛谷--P3371 [模板]单源最短路径 ...

  5. Ubuntu18 安装jdk8

    按照网上能找到的方法,添加仓库已经不行了,具体原因如下: I look up to the webupd8 site and it seems that the ppa was discontinue ...

  6. UOJ #35 后缀排序 哈希做法

    题面 http://uoj.ac/problem/35 题解 后缀数组当然可以 这里用哈希做 首先排序的问题在哪里 在于比较两个后缀的复杂度是O(length)的 但是我们可以通过找LCP来优化比较 ...

  7. 十个非常棒的学习angularjs的英文网站

    AngularJS 是非常棒的JS框架,能够创建功能强大,动态功能的Web app.AngularJS自2009发布以来,已经广泛应用于Web 开发中.但是对想要学习Angular JS 的人而言,只 ...

  8. this关键字实现串联构造函数调用

    在一个类中如果需要实现多个自定义构造函数,通常做法是在构造函数中实现各自的业务逻辑,如果这些业务逻辑的实现并非截然不同的话,显然不符合oop编程思想,极不利于维护,当然,我们也可以通过将相同的逻辑部分 ...

  9. pandas DataFrame 警告(SettingWithCopyWarning)

    转自:https://www.cnblogs.com/pig-fly/p/7875472.html 刚接触python不久,编程也是三脚猫,所以对常用的这几个工具还没有一个好的使用习惯,毕竟程序语言是 ...

  10. vue同胞组件通讯解决方案(以下为一种另外可用vuex解决)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...