外排序 & 败者树 & 多路归并-学习
来来来,根据这篇文章,学一下败者树吧:
http://blog.csdn.net/whz_zb/article/details/7425152
一、胜者树
胜者树的一个优点是,如果一个选手的值改变了,可以很容易地修改这棵胜者树。只需要沿着从该结点到根结点的路径修改这棵二叉树,而不必改变其他比赛的结果。
二、败者树
败者树是胜者树的一种变体。在败者树中,用父结点记录其左右子结点进行比赛的败者,而让胜者参加下一轮的比赛。败者树的根结点记录的是败者,需要加一个结点来记录整个比赛的胜利者。采用败者树可以简化重构的过程。
败者树 多路平衡归并外部排序
一 外部排序的基本思路
假设有一个72KB的文件,其中存储了18K个整数,磁盘中物理块的大小为4KB,将文件分成18组,每组刚好4KB。
首先通过18次内部排序,把18组数据排好序,得到初始的18个归并段R1~R18,每个归并段有1024个整数。
然后对这18个归并段使用4路平衡归并排序。
第1次归并:产生5个归并段
R11 R12 R13 R14 R15
其中
R11是由{R1,R2,R3,R4}中的数据合并而来
R12是由{R5,R6,R7,R8}中的数据合并而来
R13是由{R9,R10,R11,R12}中的数据合并而来
R14是由{R13,R14,R15,R16}中的数据合并而来
R15是由{R17,R18}中的数据合并而来
把这5个归并段的数据写入5个文件。 类推,下略。
二 使用败者树加快合并排序
外部排序最耗时间的操作时磁盘读写,对于有m个初始归并段,k路平衡的归并排序,磁盘读写次数为
|logkm|,可见增大k的值可以减少磁盘读写的次数,但增大k的值也会带来负面效应,即进行k路合并
的时候会增加算法复杂度。
如果使用败者树,可以在O(logk)的复杂度下得到最小的数,算法复杂度将为O((n-1)*logk), 对于外部排序这种数据量超大的排序来说,这是一个不小的提高。
外排序 & 败者树 & 多路归并-学习的更多相关文章
- k路归并(败者树,记录败者)
败者树在外排序中用到,每加入一个数字时,调整树需要o(lgk),比较快.外排序过程主要分为两个阶段:(1)初始化各归并段写入硬盘,初识化的方法,可利用内排序方法还可以一种叫置换选择排序的方 ...
- 算法-排序(1)k路平衡归并与败者树
const int MaxValue=; //根据实际情况选择最大值 void kwaymerge(Element *r,int k){ int i,q; r=new Element[k]; //在败 ...
- UVA 11997 K Smallest Sums (多路归并)
从包含k个整数的k个数组中各选一个求和,在所有的和中选最小的k个值. 思路是多路归并,对于两个长度为k的有序表按一定顺序选两个数字组成和,(B表已经有序)会形成n个有序表 A1+B1<=A1+B ...
- K-th Number 线段树(归并树)+二分查找
K-th Number 题意:给定一个包含n个不同数的数列a1, a2, ..., an 和m个三元组表示的查询.对于每个查询(i, j, k), 输出ai, ai+1, ... ,aj的升序排列中第 ...
- uva 11997 K Smallest Sums 优先队列处理多路归并问题
题意:K个数组每组K个值,每次从一组中选一个,共K^k种,问前K个小的. 思路:优先队列处理多路归并,每个状态含有K个元素.详见刘汝佳算法指南. #include<iostream> #i ...
- AlphaGo原理-蒙特卡罗树搜索+深度学习
蒙特卡罗树搜索+深度学习 -- AlphaGo原版论文阅读笔记 目录(?)[+] 原版论文是<Mastering the game of Go with deep neural ne ...
- 珂朵莉树(Chtholly Tree)学习笔记
珂朵莉树(Chtholly Tree)学习笔记 珂朵莉树原理 其原理在于运用一颗树(set,treap,splay......)其中要求所有元素有序,并且支持基本的操作(删除,添加,查找......) ...
- bzoj4165 矩阵 堆维护多路归并
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4165 题解 大概多路归并是最很重要的知识点了吧,近几年考察也挺多的(虽然都是作为签到题的). ...
- POJ1018贪心(多路归并的想法)
题意: 有n个服务器,每个服务器都要安装网线(必须也只能安装一个),然后每个服务器都有mi种选择网线的方式,每种方式两个参数,一个是速度b,另一个是价钱p,然后让你找到一个最大的比值 min ...
随机推荐
- 中间件及tomcat的内存溢出调优
主要是这三个选项的调整需要根据主机的内存配置 以及业务量的使用情况调节 -Xmx4g -Xms4g -Xmn2g xmx 与xms一般设置为一样 xmn大致设置为xmx xms的三分之一 可以使用 ...
- uva 1451 数形结合
思路:枚举点t,寻找满足条件的点t': 计sum[i]为前i项合,平均值即为sum[t]-sum[t'-1]/t-t'+1 设(Pi=(i,Si),表示点在s中的位置,那么就可以画出坐标图,问题就转化 ...
- ajax 请求json数据中json对象的构造获取问题
前端的界面中,我想通过ajax来调用写好的json数据,并调用add(data)方法进行解析,请求如下: json数据如下: { “type”:"qqq", "lat&q ...
- Android流行界面结构——Fragment通过ViewPager(带指示器)嵌套Fragment结构的创建方法详解
原创文章,转载请注明出处http://www.cnblogs.com/baipengzhan/p/6287213.html 当前Android流行界面结构的一种——Fragment通过ViewPage ...
- 【简●解】POJ 1185,LG P2704【炮兵阵地】
POJ 1185,LG P2704[炮兵阵地] 状压经典入门. [传送门] POJ 1185 洛谷 P2704 [题目大意] 司令部的将军们打算在 \(N\times M\) 的网格地图上部署他们的炮 ...
- 天梯赛L1 题解
L1-001 Hello World (5 分) 这道超级简单的题目没有任何输入. 你只需要在一行中输出著名短句“Hello World!”就可以了. AC代码:(直接输出记性) #include & ...
- cobbler 无人值守-介绍
cobbler 介绍 快速网络安装linux操作系统的服务,支持众多的Linux版本,也支持网络安装windows系统 PXE的二次封装,将多种安装参数封装到一个菜单 它是由Python编写的 还可以 ...
- img元素srcset属性浅析
img srcset 属性 img 元素的 srcset 属性用于浏览器根据宽.高和像素密度来加载相应的图片资源. 属性格式:图片地址 宽度描述w 像素密度描述x,多个资源之间用逗号分隔.例如: &l ...
- python常用模块之sys, os, random
一. sys模块 1. 作用: sys模块是与python解释器交互的一个接口 2. 具体使用 1. sys.argv 获取当前正在执行的命令行列表, 第一个为程序本身路径 print('file n ...
- 如何取SQL结果集的第一条记录
在SQL Server数据库中,使用top关键字: SELECT TOP number|percent column_name(s) FROM table_name 在MySQL数据库中,使用LIMI ...