Problem 2238 Daxia & Wzc's problem 1627 瞬间移动
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1627
http://acm.fzu.edu.cn/problem.php?pid=2238
对应的51NOD这个题,先把n--和没m--
再套公式
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
LL quick_pow(LL a, LL b, LL MOD) { //求解 a^b%MOD的值
LL base = a % MOD;
LL ans = ; //相乘,所以这里是1
while (b) {
if (b & ) {
ans = (ans * base) % MOD; //如果这里是很大的数据,就要用quick_mul
}
base = (base * base) % MOD; //notice。注意这里,每次的base是自己base倍
b >>= ;
}
return ans;
}
LL C(LL n, LL m, LL MOD) {
if (n < m) return ; //防止sb地在循环,在lucas的时候
if (n == m) return ;
LL ans1 = ;
LL ans2 = ;
LL mx = max(n - m, m); //这个也是必要的。能约就约最大的那个
LL mi = n - mx;
for (int i = ; i <= mi; ++i) {
ans1 = ans1 * (mx + i) %MOD;
ans2 = ans2 * i % MOD;
}
return (ans1 * quick_pow(ans2, MOD - , MOD) % MOD); //这里放到最后进行,不然会很慢
}
const int MOD = 1e9 + ;
void work() {
int n, m;
cin >> n >> m;
cout << C(n + m - , n - , MOD) << endl;
}
int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
work();
return ;
}
51NOD
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
LL a, d, m, i;
const int MOD = ;
LL quick_pow (LL a, LL b, LL MOD) {
//求解 a^b%MOD的值
LL base = a % MOD;
LL ans = ; //相乘,所以这里是1
while (b) {
if (b & ) {
ans = (ans * base) % MOD; //如果这里是很大的数据,就要用quick_mul
}
base = (base * base) % MOD; //notice
//注意这里,每次的base是自己base倍
b >>= ;
}
return ans;
}
LL C (LL n, LL m, LL MOD) {
if (n < m) return ; //防止sb地在循环,在lucas的时候
if (n == m) return ;
LL ans1 = ;
LL ans2 = ;
LL mx = max(n - m, m); //这个也是必要的。能约就约最大的那个
LL mi = n - mx;
for (int i = ; i <= mi; ++i) {
ans1 = ans1 * (mx + i) % MOD;
ans2 = ans2 * i % MOD;
}
return (ans1 * quick_pow(ans2, MOD - , MOD) % MOD); //这里放到最后进行,不然会很慢
}
LL Lucas (LL n, LL m, LL MOD) {
LL ans = ;
while (n && m && ans) {
ans = ans * C(n % MOD, m % MOD, MOD) % MOD;
n /= MOD;
m /= MOD;
}
return ans;
} void work () {
if (i == ) {
printf ("%lld\n", a);
return;
}
LL ans = (C(m + i - , m, MOD) * a % MOD + C(m + i - , i - , MOD) * d % MOD) % MOD;
printf ("%lld\n", ans);
return ;
}
int main() {
#ifdef local
freopen("data.txt", "r", stdin);
#endif
while (scanf("%lld%lld%lld%lld", &a, &d, &m, &i) != EOF) work();
return ;
}
FZUOJ
Problem 2238 Daxia & Wzc's problem 1627 瞬间移动的更多相关文章
- FZU Problem 2238 Daxia & Wzc's problem
Daxia在2016年5月期间去瑞士度蜜月,顺便拜访了Wzc,Wzc给他出了一个问题: Wzc给Daxia等差数列A(0),告诉Daxia首项a和公差d; 首先让Daxia求出数列A(0)前n项和,得 ...
- 【数论】FOJ 2238 Daxia & Wzc's problem
题目链接: http://acm.fzu.edu.cn/problem.php?pid=2238 题目大意: 已知等差数列A(0)的首项a和公差d,求出数列A(0)前n项和,得到新数列A(1);以此类 ...
- FZU 2238 Daxia & Wzc's problem
公式. $a×C_{m + i - 1}^m + d×C_{m + i - 1}^{m + 1}$. 推导过程可以看http://blog.csdn.net/queuelovestack/articl ...
- FZU 8月有奖月赛A Daxia & Wzc's problem (Lucas)
Problem A Daxia & Wzc's problem Accept: 42 Submit: 228Time Limit: 1000 mSec Memory Limit : ...
- 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)
Problem A: The 3n + 1 problem Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 14 Solved: 6[Submit][St ...
- 51Nod 1627 瞬间移动 —— 组合数学
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1627 1627 瞬间移动 基准时间限制:1 秒 空间限制:1 ...
- 51 Nod 1627瞬间移动(插板法!)
1627 瞬间移动 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右 ...
- FZU 2240 Daxia & Suneast's problem
博弈,$SG$函数,规律,线段树. 这个问题套路很明显,先找求出$SG$函数值是多少,然后异或起来,如果是$0$就后手赢,否则先手赢.修改操作和区间查询的话可以用线段树维护一下区间异或和. 数据那么大 ...
- FZU Problem 2244 Daxia want to buy house
模拟题,注意: 1.那两个贷款都是向银行贷的,就是两个贷款的总额不能超过70%,就算公积金贷款能贷也不行,我开始的时候以为公积金贷款是向公司借的,,欺负我这些小白嘛.... 2.最坑的地方 *0.7是 ...
随机推荐
- Codeforces Round #422 (Div. 2) B. Crossword solving 枚举
B. Crossword solving Erelong Leha was bored by calculating of the greatest common divisor of two ...
- gradle in action 笔记
原网址 https://lippiouyang.gitbooks.io/gradle-in-action-cn/content/
- fstab文件解析
1 这个文件的用途 这个文件是启动时自动挂载指定的磁盘或者分区到系统目录下用的,提供给mount命令用. 2 文件解析 每一行是一次mount操作. 磁盘或者分区 挂载的目录 挂载的磁盘 ...
- [翻译]Unity中的AssetBundle详解(三)
构建AssetBundles 在AssetBundle工作流程的文档中,我们有一个示例代码,它将三个参数传递给BuildPipeline.BuildAssetBundles函数.让我们更深入地了解我们 ...
- Hadoop一些要注意的点
1.大多小文件的劣处: a. 生成更多的map任务,额外的开销: b. 每个文件都需要守址时间: c. HDFS上namenode需要占用内存空间:
- html5--6-63 布局
html5--6-63 布局 实例 学习要点 掌握传统布局与CSS3新增布局方式的实现和应用 掌握CSS3新增属性box-sizing 了解CSS3新增的多列布局 常用布局方式 固定布局与流体布局的优 ...
- Oracle :修改数据库服务器字符集
最近,有现场反应,程序显示乱码.感觉很奇怪,该系统已经卖出去无数了.肯定是现场数据库字符集有问题,经过查看, 现场环境: window系统,oracle10g. 我们要求的数据库字符集是AL32UTF ...
- CA服务器的搭建
CA (Certification Authority) 是认证机构的国际通称,它是对数字证书的申请者发放.管理.取消数字证书的机构.CA的作用是检查证书持有者身份的合法性,并签发证书(用数学方法在证 ...
- hadoop部署之防火墙
在部署hadoop时,好多资料上都写了要关闭防火墙,如果不关闭可能出现节点间无法通信的情况,于是大家也都这样做了,因此集群通信正常.当然集群一般是处于局域网中的,因此关闭防火墙一般也不会存在安全隐患, ...
- centos7 && centos6.5部KVM使用NAT联网并为虚拟机配置firewalld && iptables防火墙端口转发
centos7 && centos6.5 部KVM使用NAT联网并为虚拟机配置firewalld && iptables防火墙端口转发 一.准备工作: 1: 检查kvm ...