[loj6089]小Y的背包计数问题
https://www.zybuluo.com/ysner/note/1285358
题面
小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品。
对于第\(i\)种物品,共有\(i\)个可以使用,并且对于每一个\(i\)物品,体积均为\(i\)。
求小\(Y\)把该背包装满的方案数为多少,答案对于\(23333333\)取模。
定义两种不同的方案为:当且仅当至少存在一种物品的使用数量不同。
- \(n\leq10^5\)
解析
这个背包问题让我耳目一新啊。
\(idea\)棒棒的。
注意到题目中物品\(i\)(\(i\geq\sqrt n\))的个数限制实际上是不存在的。
所以可以把这个问题分为两个子问题:多重背包问题和完全背包问题。
设\(f[i][v]\)表示前\(i\)个物品,总体积为\(v\)时的方案数。
对于\(i\leq\sqrt n\):(多重背包问题)
很显然有$$f[i][v]=\sum_{j=1}^if[i-1][v-j*i]$$
可以前缀和优化做到\(O(n\sqrt n)\)。
对于\(i\geq\sqrt n\):(完全背包问题)
又注意到一个物品最多取\(\sqrt n\)个。
同样设个\(g[i][v]\)表示方案数。
可以认为我们要\(DP\)出一个和为\(n\),最小数至少\(\sqrt n+1\)的不下降序列
(序列中的数是物品体积)。
转移有两种:
- 在序列开头加入一个数\(\sqrt n+1\)
- 把序列中所有数\(+1\)
则$$g[i][v]=g[i-1][v-\sqrt n-1]+g[i][v-i]$$
这个复杂度\(O(n)\)?
最后讨论一下给前一个问题分配多少体积,后一个问题分配多少体积,统计答案即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define max(a,b) (((a)>(b))?(a):(b))
#define min(a,b) (((a)<(b))?(a):(b))
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=2005,inf=2e9,mod=23333333;
int n,f[N],g[350][N],s[N],ans=-inf,m;
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
int main()
{
n=gi();m=sqrt(n);
f[0]=1;
fp(i,1,m)
{
fp(j,0,i) s[j]=f[j];
fp(j,i,n) s[j]=(f[j]+s[j-i])%mod;//前缀和
fp(j,0,n)
{
f[j]=s[j];
if(j-i*(i+1)>=0) f[j]=(f[j]-s[j-i*(i+1)]+mod)%mod;//去掉不合法状态
}
}
g[0][0]=1;ans=f[n];
fp(i,1,m)
for(re int j=i*(m+1);j<=n;j++)
{
g[i][j]=(g[i-1][j-m-1]+g[i][j-i])%mod;
(ans+=1ll*g[i][j]*f[n-j]%mod)%=mod;
}
printf("%d\n",ans);
return 0;
}
[loj6089]小Y的背包计数问题的更多相关文章
- loj6089 小 Y 的背包计数问题
link 吐槽: 好吧开学了果然忙得要死……不过为了证明我的blog还没有凉,还是跑来更一波水题 题意: 有n种物品,第i种体积为i,问装满一个大小为n的背包有多少种方案? $n\leq 10^5.$ ...
- LOJ6089 小Y的背包计数问题(根号优化背包)
Solutioon 这道题利用根号分治可以把复杂度降到n根号n级别. 我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制. 进一步我们发现,这个背包最多只能放根号n个物品. ...
- LOJ6089 小Y的背包计数问题 背包、根号分治
题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...
- LOJ6089 小Y的背包计数问题 背包
正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...
- 【LOJ6089】小Y的背包计数问题(动态规划)
[LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...
- LOJ #6089. 小 Y 的背包计数问题
LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...
- LOJ#6089 小 Y 的背包计数问题 - DP精题
题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...
- loj 6089 小 Y 的背包计数问题——分类进行的背包
题目:https://loj.ac/problem/6089 直接多重背包,加上分剩余类的前缀和还是n^2的. 但可发现当体积>sqrt(n)时,个数的限制形同虚设,且最多有sqrt(n)个物品 ...
- LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP
题目:https://loj.ac/problem/6089 对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k ...
随机推荐
- HashTable的C++实现
由哈希表的定义,采用C++完成了一个学生成绩存储系统,分析过程如下: 由于哈希表是按KEY值存储,我们假设KEY值为一个字符串.hash算法为字符串的前两位大写字母所对应的数字对一个质数的模运算. i ...
- IDEA常用插件记录
让我们来记录一下常用的IDEA插件:(从其他博客中取了许多图片,出处见图片水印) 1.JRebel for IntelliJ 热部署神器2.Free MyBatis plugin 实现dao层方法与x ...
- IDEA-基本设置
目录: 1.设置内存 2.设置编码格式 3.设置换行符 4.设置新建Class文档说明 5.添加自定义注释 6.设置自己的maven 工欲善其事,必先利其器,设置好基础的设置才能事半功倍!少踩坑!以下 ...
- Session与Token的区别
1. 为什么要有session的出现?答:是由于网络中http协议造成的,因为http本身是无状态协议,这样,无法确定你的本次请求和上次请求是不是你发送的.如果要进行类似论坛登陆相关的操作,就实现不了 ...
- hihoCoder#1119 小Hi小Ho的惊天大作战:扫雷·二
原题地址 没有复杂算法,就是麻烦,写起来细节比较多,比较考验细心,一次AC好开心. 代码: #include <iostream> #include <vector> #inc ...
- MySQL Workbench基本操作
MySQL Workbench是一款专为MySQL设计的ER/数据库建模工具.它是著名的数据库设计工具DBDesigner4的继任者.你可以用MySQL Workbench设计和创建新的数据库图示,建 ...
- Object-C 打开工程,选择模拟起时,提示"no scheme"
错误提示,如下图: 解决思路:
- hadoop(2)hadoop配置
hadoop入门(二) hadoop的配置 1.本地模式 2.伪分布式 3.分布式 一.配置linux环境: 1打开虚拟网络编辑器,选择 VMnet1 仅主机模式, 子网 IP 设为 192. ...
- Git回退---reset和revert
今天学习了git回退的两个命令,现在总结一下: 1.git reset 如果想回退错误的提交C和D,只要把指针移到B上 git reset --hard a0fvf8 而这时候,远程仓库的指针还在D上 ...
- MongoDB小结02 - 配置、启动MongoDB
下载MongoDB 第一步:登上MongoDB官网,找到自己的适合的版本下载 第二步:解压(免安装),改名mongodb(举例命名,可以任个人喜好),放在你喜欢的位置(任喜好) 第三步:通过命令行: ...