看到\( 10^10 \)的范围首先想到二分,然后把问题转化为判断\( [1,n] \)内有多少个是某个质数的平方和的数。

所以应该是加上是一个质数的平方的个数减去是两个质数的平方的个数加上是三个质数的平方的个数……注意到这正好是莫比乌斯函数反过来,所以 \( re-=mb[i]*n/(i*i) \) 即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=300005;
int p[N],tot,mu[N];
long long n,mb[N],ans;
bool v[N];
long long wk(long long n)
{
long long re=0ll;
for(long long i=2;i*i<=n;i++)
re-=mb[i]*n/(i*i);//cout<<re<<endl;
return re;
}
int main()
{
mb[1]=1;
for(int i=2;i<=N-5;i++)
{
if(!v[i])
{
p[++tot]=i;
mb[i]=-1;
}
for(int j=1;j<=tot&&i*p[j]<=N-5;j++)
{
int k=i*p[j];
v[k]=1;
if(i%p[j]==0)
{
mb[k]=0;
break;
}
mb[k]=-mb[i];
}
}
scanf("%lld",&n);
long long l=0ll,r=30000000000ll;
while(l<=r)
{
long long mid=(l+r)>>1ll;
if(wk(mid)<n)
l=mid+1;
else
ans=mid,r=mid-1;
}
printf("%lld",ans);
return 0;
}

bzoj 2986: Non-Squarefree Numbers【容斥+莫比乌斯函数】的更多相关文章

  1. BZOJ2440(容斥+莫比乌斯函数)

    题目本质: 首先有如下结论: 而通过写一写可以发现: 举例来讲,36及其倍数的数,会被1的倍数加一遍,被4的倍数扣一遍,会被9的倍数扣一遍,而为了最终计数为0,需要再加回来一遍,所以在容斥里面是正号. ...

  2. 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

    Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...

  3. BZoj 2301 Problem b(容斥定理+莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MB Submit: 7732  Solved: 3750 [Submi ...

  4. [BZOJ 3198] [Sdoi2013] spring 【容斥 + Hash】

    题目链接:BZOJ - 3198 题目分析 题目要求求出有多少对泉有恰好 k 个值相等. 我们用容斥来做. 枚举 2^6 种状态,某一位是 1 表示这一位相同,那么假设 1 的个数为 x . 答案就是 ...

  5. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  6. BZOJ.4558.[JLOI2016]方(计数 容斥)

    BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...

  7. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  8. 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)

    vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...

  9. bzoj 2669 [cqoi2012]局部极小值 DP+容斥

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 838  Solved: 444[Submit][Status ...

随机推荐

  1. eclipse提速02 - eclipse.ini优化

    给eclipse执行jvm.它可以让你使用自己的jdk,而不是系统环境变量所指定的jdk -vm /path/to/your/java 使用最新的jdk来运行eclipse.使用最新的jdk要好很多. ...

  2. C# 获得图片的分辨率和大小

    double DPI = pictureBox1.Image.HorizontalResolution;//获得分辨率 gisoracle double w = 1.0 * pictureBox1.I ...

  3. 问题解决:FFmpeg视频编解码库,无法解析的外部信号

    在编译FFmpeg相关项目时.可能会出现: error LNK2019: 无法解析的外部符号 "int __cdecl avpicture_fill(struct AVPicture *,u ...

  4. 什么是WPF? 秒懂 !

    一開始听到WPF.认为非常陌生.在百度百科等地方看完简单介绍之后.感觉更深奥.各种不懂啊! 在简单做了几个页面之后,发现.原来如此! So Easy 但又So Magic. 为什么说它简单?由于它简直 ...

  5. ExpandableListView的使用以及信息的高亮显示

    ExpandableListView是ListView控件的延伸,它能够对数据进行分组显示和隐藏,并统计总数量.可进行滚动,对某一内容高亮显示. <1>编写xml布局文件,用于获取Expa ...

  6. 相机标定(Camera calibration)

    简单介绍 摄像机标定(Camera calibration)简单来说是从世界坐标系换到图像坐标系的过程.也就是求终于的投影矩阵 P 的过程,以下相关的部分主要參考UIUC的计算机视觉的课件(网址Spr ...

  7. Guava ---- Concurrent并发

    Guava在JDK1.5的基础上, 对并发包进行扩展. 有一些是易用性的扩展(如Monitor). 有一些是功能的完好(如ListenableFuture). 再加上一些函数式编程的特性, 使并发包的 ...

  8. 微信小程序 项目实战(三)list 列表页 及 item 详情页

    1.项目结构 2.list 列表页 (1)数据(逻辑) list.js // pages/list/list.js Page({ /** * 页面的初始数据 */ data: { title: '加载 ...

  9. sqlserver中All、Any和Some用法与区别

    转自:http://blog.csdn.net/gyc1105/article/details/8063624 SQLServer中有三个关键字可以修改比较运算符:All.Any和Some,其中Som ...

  10. [数据集]新浪微博数据集MicroblogPCU

    数据集下载地址:下载 摘要:MicroblogPCU是从新浪微博採集到的.它能够被用于研究机器学习方法和社会关系研究. 这个数据集被原作者用于探索微博中的spammers(发送垃圾信息的人).他们的d ...