Description

  给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0)。例如123434有90种排列能
被2整除,其中末位为2的有30种,末位为4的有60种。

Input

  输入第一行是一个整数T,表示测试数据的个数,以下每行一组s和d,中间用空格隔开。s保证只包含数字0, 1
, 2, 3, 4, 5, 6, 7, 8, 9.

Output

  每个数据仅一行,表示能被d整除的排列的个数。

Sample Input


Sample Output


HINT

在前三个例子中,排列分别有1, 3, 3628800种,它们都是1的倍数。

【限制】

100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15

Solution

考虑整除的性质

联想一下竖式除法,一个数n%d=x,那么(n*10+y)%d=(x*10+y)%d

这就是此题利用的原理

设状态为f[i][j],i是一个二进制数,第i位的0或1代表给定的数串该位数是否被选了,j代表当前i状态下除d余j的方案总数

那么转移如下

f[i|(1<<k)][(j*10+str[k])%d]=f[i|(1<<k)][(j*10+str[k])%d]+f[i][j]

有序枚举即可

#include<stdio.h>
#include<string.h>
char s[];
int n,d,frac[],T,f[<<][],cnt[],a[];
int main(){
frac[]=;
for(int i=;i<=;i++)
frac[i]=frac[i-]*i;
scanf("%d",&T);
while(T--){
memset(f,,sizeof(f));
memset(cnt,,sizeof(cnt));
scanf("%s%d",&s,&d);
n=strlen(s);
for(int i=;i<n;i++)
cnt[a[i]=s[i]-'']++;
f[][]=;
for(int i=;i<(<<n);i++)
for(int j=;j<d;j++)
for(int k=;k<n;k++)
if(!(i&(<<k)))
f[i|<<k][(j*+a[k])%d]+=f[i][j];
int ans=f[(<<n)-][];
for(int i=;i<;i++)
ans/=frac[cnt[i]];
printf("%d\n",ans);
}
return ;
}

[bzoj1072][SCOI2007][排列perm] (状态压缩+数位dp+排列去重)的更多相关文章

  1. BZOJ 1072: [SCOI2007]排列perm 状态压缩DP

    1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...

  2. hdu 4649 Professor Tian 反状态压缩+概率DP

    思路:反状态压缩——把数据转换成20位的01来进行运算 因为只有20位,而且&,|,^都不会进位,那么一位一位地看,每一位不是0就是1,这样求出每一位是1的概率,再乘以该位的十进制数,累加,就 ...

  3. HDU 4739 Zhuge Liang's Mines (状态压缩+背包DP)

    题意 给定平面直角坐标系内的N(N <= 20)个点,每四个点构成一个正方形可以消去,问最多可以消去几个点. 思路 比赛的时候暴力dfs+O(n^4)枚举写过了--无意间看到有题解用状压DP(这 ...

  4. ACM学习历程—HDU1584 蜘蛛牌(动态规划 && 状态压缩 || 区间DP)

    Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么这些牌也跟着一起 ...

  5. [HDU 4336] Card Collector (状态压缩概率dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题目大意:有n种卡片,需要吃零食收集,打开零食,出现第i种卡片的概率是p[i],也有可能不出现卡 ...

  6. [bzoj1072][SCOI2007]排列(状态压缩DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1072 分析:看了题解才知道,状态的设计很巧妙,用余数表示,即f[i][j]表示二进制状 ...

  7. [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

    题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...

  8. BZOJ1072 排列perm 【状压dp】

    Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能 被2整除,其中末位为2的有30种,末位为4的有60种. Inpu ...

  9. 【BZOJ】1072: [SCOI2007]排列perm(状压dp+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1072 首先无限膜拜题解orz表示只会暴力orz 数据那么小我竟然想不到状压! orz 这种题可以取模 ...

随机推荐

  1. oracle 定时器调用存储过程

    转载请说明出处:http://t22011787.iteye.com/blog/1112745 一.查询系统中的job,可以查询视图 --相关视图 select * from dba_jobs; se ...

  2. samba - linux客户端访问samba服务器的指令(转载)

    转自:http://linux.sheup.com/linux/linux5303.htm linux客户端访问samba服务器的指令2004-04-23 15:18 pm来自:Linux文档现载:W ...

  3. SVN报错 Not Found In Revision 不支持空目录

    如果你要初始化上传的SVN目录为空,有可能会报这个错误 解决方法:在SVN下新建一个目录即可

  4. bzoj 1627: [Usaco2007 Dec]穿越泥地【bfs】

    在洛谷上被卡了一个点开了O2才过= = bfs即可,为方便存储,把所有坐标+500 #include<iostream> #include<cstdio> #include&l ...

  5. WPF-CheckBox(复选框、功能开关)美化

    老规矩,先放图 按钮美化背景: 由于特殊需求,复选框样式单一,所以我们需要将其按钮重构和美化达到我们的需求 复选框美化思维引导: 图中1为背景色 图中2为边框 图中3为句柄控件组成(Path+Rect ...

  6. Manacher HDOJ 5371 Hotaru's problem

    题目传送门 /* 题意:求形如(2 3 4) (4 3 2) (2 3 4)的最长长度,即两个重叠一半的回文串 Manacher:比赛看到这题还以为套个模板就行了,因为BC上有道类似的题,自己又学过M ...

  7. Using 10053 Trace Events and get outline

    When it comes to performance tuning, we can spend time on one or both ends of the problem. On the &q ...

  8. Python Turtle绘图

    1. 画布(canvas) 画布就是turtle为我们展开用于绘图区域, 我们可以设置它的大小和初始位置 1.1 设置画布大小 turtle.screensize(canvwidth=None, ca ...

  9. 发生在升级OS X Yosemite后:修复各种开发环境

    本博文最初发布于我的个人博客<Jerry的乐园> 终于还是忍不住升级了,促使我升级的原动力居然是Alfred的Yosemite theme居然比初始theme好看很多!在升级前就预想到我的 ...

  10. Intellij 下 mybatis 插件 MyBatisCodeHelperPro破解

    步骤1.破解包下载地址:https://gitee.com/pengzhile/MyBatisCodeHelper-Pro-Crack/releases 步骤2.下载:Intellij IDEA  p ...