洛谷 P3377 模板左偏树
题目:https://www.luogu.org/problemnew/show/P3377
左偏树的模板题;
加深了我对空 merge 的理解;
结构体的编号就是原序列的位置。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=1e5+;
int n,m,rt[maxn],fa[maxn];
bool out[maxn];
struct N{
int ls,rs,val,dis;
}t[maxn];
int get(int x){while(rt[x])x=rt[x]; return x;}
int merge(int x,int y)
{
if(!x||!y)return x+y;
if(t[x].val>t[y].val||(t[x].val==t[y].val&&x>y))swap(x,y);
t[x].rs=merge(t[x].rs,y);
if(t[t[x].ls].dis<t[t[x].rs].dis)swap(t[x].ls,t[x].rs);
if(t[x].rs)t[x].dis=t[t[x].rs].dis+;
else t[x].dis=;
rt[t[x].ls]=rt[t[x].rs]=x;
return x;
}
void del(int x)
{
out[x]=;
rt[t[x].ls]=rt[t[x].rs]=;
merge(t[x].ls,t[x].rs);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=,x;i<=n;i++){scanf("%d",&x); t[i].val=x;}
for(int i=,op,x,y,u,v;i<=m;i++)
{
scanf("%d%d",&op,&x);
if(op==)
{
scanf("%d",&y);
if(out[x]||out[y])continue;
u=get(x); v=get(y);
if(u==v)continue;
merge(u,v);
}
else
{
if(out[x]){printf("-1\n"); continue;}
u=get(x); printf("%d\n",t[u].val);
del(u);
}
}
return ;
}
洛谷 P3377 模板左偏树的更多相关文章
- 洛谷 - P1552 - 派遣 - 左偏树 - 并查集
首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...
- 洛谷.4897.[模板]最小割树(Dinic)
题目链接 最小割树模板.具体见:https://www.cnblogs.com/SovietPower/p/9734013.html. ISAP不知为啥T成0分了.. Dinic: //1566ms ...
- 洛谷 P3377 【模板】左偏树(可并堆)
洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...
- 洛谷P3377 【模板】左偏树(可并堆) 题解
作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...
- 模板 可并堆【洛谷P3377】 【模板】左偏树(可并堆)
P3377 [模板]左偏树(可并堆) 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删 ...
- 洛谷 - P3377 - 【模板】左偏树(可并堆) - 左偏树 - 并查集
https://www.luogu.org/problemnew/show/P3377 左偏树+并查集 左偏树维护两个可合并的堆,并查集维护两个堆元素合并后可以找到正确的树根. 关键点在于删除一个堆的 ...
- [洛谷P3377]【模板】左偏树(可并堆)
题目大意:有$n$个数,$m$个操作: $1\;x\;y:$把第$x$个数和第$y$个数所在的小根堆合并 $2\;x:$输出第$x$个数所在的堆的最小值 题解:左偏树,保证每个的左儿子的距离大于右儿子 ...
- k短路模板(洛谷P2483 [SDOI2010]魔法猪学院)(k短路,最短路,左偏树,priority_queue)
你谷数据够强了,以前的A*应该差不多死掉了. 所以,小伙伴们快来一起把YL顶上去把!戳这里! 俞鼎力的课件 需要掌握的内容: Dijkstra构建最短路径树. 可持久化堆(使用左偏树,因其有二叉树结构 ...
- 2021.08.01 P3377 左偏树模板
2021.08.01 P3377 左偏树模板 P3377 [模板]左偏树(可并堆) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) #include<iostream> ...
随机推荐
- scala学习(3)-----wordcount【sparksession】
参考: spark中文官方网址:http://spark.apachecn.org/#/ https://www.iteblog.com/archives/1674.html 一.知识点: 1.Dat ...
- 调用微信扫一扫功能,踩坑'invalid signature'
在vue项目中,调用微信扫一扫功能,在安卓系统下完全正常,ios系统下却报错'invalid signature'的错误,这可能令许多小伙伴困惑,经过查询大量博客相关资料,才找到了解决的方法. 原因: ...
- 攻破javascript面试的完美指南【译】
攻破javascript面试的完美指南(开发者视角) 0. 前言 本文适合有一定js基础的前端开发人员阅读.原文是我google时无意发现的, 被一些知识点清晰的解析所打动, 决定翻译并记录下来.这个 ...
- 关于dijkstra的小根堆优化
YY引言 在NOI2018D1T1中出现了一些很震惊的情况,D1T1可以用最短路解决,但是大部分人都在用熟知的SPFA求解最短路.而SPFA的最坏复杂度能够被卡到$O(VE)$.就是边的数量乘以点的数 ...
- MyBatis 中 resultMap 详解
resultMap 是 Mybatis 最强大的元素之一,它可以将查询到的复杂数据(比如查询到几个表中数据)映射到一个结果集当中.如在实际应用中,有一个表为(用户角色表),通过查询用户表信息展示页面, ...
- Linux:DHCP服务配置
DHCP服务程序能够使局域网内的主机自动且动态的获取IP地址.子网掩码.网关地址以及DNS服务器地址等信息. 说明:先安装DHCP服务 yum install dhcp -y ...
- Struts2学习笔记:DMI,多个配置文件,默认Action,后缀
动态方法调用有三种方法: 1.同一Action多次映射,每个action标签的method对应要调用的方法. 当要调用的方法多了就会增加struts.xml文件的复杂性. 2.struts.Dynam ...
- LINUX-挂载一个文件系统
mount /dev/hda2 /mnt/hda2 挂载一个叫做hda2的盘 - 确定目录 '/ mnt/hda2' 已经存在 umount /dev/hda2 卸载一个叫做hda2的盘 - 先从挂载 ...
- 对于 前端请求Django 后端服务出现403 Forbidden (CSRF token missing or incorrect.) 问题的解析
Django中使用ajax post向後臺傳送資料時403 Forbidden (CSRF token missing or incorrect.):的解決辦法 在Django中使用ajax post ...
- A - Restaurant
UVA 1468 Description Mr. Kim is planning to open a new restaurant. His city is laid out as a grid ...