洛谷P2303 [SDOi2012]Longge的问题
题目背景
SDOi2012
题目描述
Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。
输入输出格式
输入格式:
一个整数,为N。
输出格式:
一个整数,为所求的答案。
输入输出样例
输入样例#1:
6
输出样例#1:
15
说明
对于60%的数据,0
#include<stdio.h>
#include<math.h>
typedef long long ll;
ll euler(ll x)//欧拉函数
{
ll ans=x,tp=sqrt(x);
for(ll i=2;i<=tp;++i)
if(x%i==0)
{
ans=ans-ans/i;
while(x%i==0) x/=i;
}
if(x>1) ans=ans-ans/x;
return ans;
}
int main()
{
ll n;
scanf("%lld",&n);
ll ans=0,tp=sqrt(n);
for(ll i=1;i<=tp;++i)
if(n%i==0) ans+=i*euler(n/i)+n/i*euler(i);
if(tp*tp==n) ans-=tp*euler(tp);
printf("%lld\n",ans);
return 0;
}
洛谷P2303 [SDOi2012]Longge的问题的更多相关文章
- 洛谷 P2303 [SDOi2012]Longge的问题 解题报告
P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...
- 洛谷P2303 [SDOi2012] Longge的问题 数论
看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...
- 洛谷 P5785 [SDOI2012] 任务安排
链接: P5785 弱化版:P2365 题意: 有 \(n\) 个任务待完成,每个任务有一个完成时间 \(t_i\) 和费用系数 \(f_i\),相邻的任务可以被分成一批.从零时刻开始这些任务会被机器 ...
- 【洛谷题解】P2303 [SDOi2012]Longge的问题
题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...
- 【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)
题目链接 题意:求\(\sum_{i=1}^{n}\gcd(i,n)\) 首先可以肯定,\(\gcd(i,n)|n\). 所以设\(t(x)\)表示\(gcd(i,n)=x\)的\(i\)的个数. 那 ...
- P2303 [SDOi2012]Longge的问题
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入输出格式 输入格式: 一 ...
- 洛谷 P2498 [SDOI2012]拯救小云公主 解题报告
P2498 [SDOI2012]拯救小云公主 题目描述 英雄又即将踏上拯救公主的道路-- 这次的拯救目标是--爱和正义的小云公主. 英雄来到\(boss\)的洞穴门口,他一下子就懵了,因为面前不只是一 ...
- luogu P2303 [SDOi2012]Longge的问题
传送门 \[\sum_{i=1}^{n}\gcd(i,n)\] 考虑枚举所有可能的gcd,可以发现这一定是\(n\)的约数,当\(\gcd(i,n)=x\)时,\(gcd(\frac{i}{x},\f ...
- 洛谷P2351 [SDOi2012]吊灯 【数学】
题目 Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b].其中编号为 1 ...
随机推荐
- TWaver MONO模板库新鲜出炉 精彩纷呈
MONO Design在线3D建模平台网站, www.mono-design.cn,开发组的成员们已经开始紧锣密鼓的对这个平台进行内测.在之前的文章里,我们提到用户可以获得多种多样的TWaver官方模 ...
- QT使用插件QAxWidget来展示web页面
要求:用qt版开发一个桌面程序,该程序有一个界面,用来显示一个采用silverlight开发的web页面. 分析:在qt中实现web显示,根据qt的版本和对应编译器的版本,有如下选择: (1)5.6以 ...
- [Algorithm] 5. Kth Largest Element
Description Find K-th largest element in an array. Example In array [9,3,2,4,8], the 3rd largest ele ...
- Linux修改系统时间与时区
GMT (Greewich Mean Time) 格林威治标准时间:GMT是老的时间计量标准,根据地球的自转和公转来计算时间,也就是太阳每天经过位于英国伦敦郊区的皇家格林尼治天文台的标准时间就是中午 ...
- 转载:tomcat实现热部署的配置
tomcat实现热部署的配置 我们实现热部署后,自然就可以通过maven操作tomcat了,所以就需要maven取得操作tomcat的权限,现在这一步就是配置tomcat的可操作权限. 进入tom ...
- sectional data interpolation in Tecplot
$!Varset |NumLoop|= $!Loop |NumLoop| $!Varset |num|=(|Loop|*+) $!RotateData ZoneList = [] Angle = |n ...
- springcloud(九):熔断器Hystrix和Feign的应用案例
因为 feign 中已经支持了 Hystrix ,所以在 Feign 中使用 Hystrix 时,不需要导包,也不需要在入口类上面增加额外的注解: Feign 虽然支持了 Hystrix ,但是默认 ...
- 【02】Node.js 安装配置(OK)
[02] Node.js 安装配置 本章节我们将向大家介绍在window和Linux上安装Node.js的方法. Node.js安装包及源码下载地址为:http://www.nodejs.org/do ...
- android调试
要进行调试,首先构建app的时候必须选择是Debug模式,而不能是Release模式. 接下来的内容转载自: http://www.cnblogs.com/gaoteng/p/5711314.html ...
- P3372 【模板】线段树 1 洛谷
https://www.luogu.org/problem/show?pid=3372 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 ...