UVA - 11178-Morley’s Theorem

就是给出一个等边三角形的三个顶点坐标
然后每一个角的三等分线会交错成一个三角形,求出这个三角形的顶点坐标
一開始。我题意理解错了……还以为是随意三角形,所以代码可以处理随意三角形的情况
我的做法:
通过旋转点的位置得到这些三等分线的直线方程,然后用高斯消元求交点
我的代码:
#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator -(const dot &a){return dot(x-a.x,y-a.y);}
dot operator +(const dot &a){return dot(x+a.x,y+a.y);}
double mod(){return sqrt(pow(x,2)+pow(y,2));}
double mul(const dot &a){return x*a.x+y*a.y;}
};
void gauss(double a[10][10])
{
int i,j,k,t,n=2;
for(i=0;i<n;i++)
{
t=i;
for(j=i+1;j<n;j++)
if(fabs(a[j][i])>fabs(a[t][i]))
t=i;
if(i!=t)
for(j=i;j<=n;j++)
swap(a[i][j],a[t][j]);
if(a[i][i]!=0)
for(j=i+1;j<n;j++)
for(k=n;k>=i;k--)
a[j][k]-=a[j][i]/a[i][i]*a[i][k];
}
for(i=n-1;i>-1;i--)
{
for(j=i+1;j<n;j++)
a[i][n]-=a[i][j]*a[j][n];
a[i][n]/=a[i][i];
}
}
dot ro(dot a,dot b,double c)
{
a=a-b;
a=dot(a.x*cos(c)-a.y*sin(c),a.x*sin(c)+a.y*cos(c));
return a+b;
}
int main()
{
pair<dot,dot>t;
dot a[3];
double b,c[10][10];
int n,i;
cin>>n;
while(n--)
{
for(i=0;i<3;i++)
scanf("%lf%lf",&a[i].x,&a[i].y); t.first=a[0]-a[1];t.second=a[2]-a[1];
b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[1];t.second=ro(a[2],a[1],b);
c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x; t.first=a[1]-a[2];t.second=a[0]-a[2];
b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[2];t.second=ro(a[0],a[2],b);
c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x; gauss(c); printf("%.6lf %.6lf ",c[0][2],c[1][2]); t.first=a[1]-a[2];t.second=a[0]-a[2];
b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[2];t.second=ro(a[0],a[2],b);
c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x; t.first=a[1]-a[0];t.second=a[2]-a[0];
b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[0];t.second=ro(a[1],a[0],b);
c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x; gauss(c); printf("%.6lf %.6lf ",c[0][2],c[1][2]); t.first=a[1]-a[0];t.second=a[2]-a[0];
b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[0];t.second=ro(a[1],a[0],b);
c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x; t.first=a[0]-a[1];t.second=a[2]-a[1];
b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[1];t.second=ro(a[2],a[1],b);
c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x; gauss(c); printf("%.6lf %.6lf\n",c[0][2],c[1][2]);
}
}
原题:
Problem D
Morley’s Theorem
Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers
. This six integers actually indicates that the Cartesian coordinates of point A, B and C are
respectively. You can assume that the area of triangle ABC is not equal to zero,
and the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers
separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are
respectively. Errors less than
will be accepted.
Sample Input Output for Sample Input
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
Problemsetters: Shahriar Manzoor
Special Thanks: Joachim Wulff
Source
option=com_onlinejudge&Itemid=8&category=44">
Shahriar Manzoor
Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D ::
Examples
UVA - 11178-Morley’s Theorem的更多相关文章
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
- UVA 11178 Morley's Theorem(旋转+直线交点)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...
- UVa 11178 Morley's Theorem (几何问题)
题意:给定三角形的三个点,让你求它每个角的三等分线所交的顶点. 析:根据自己的以前的数学知识,应该很容易想到思想,比如D点,就是应该求直线BD和CD的交点, 以前还得自己算,现在计算机帮你算,更方便, ...
- 简单几何(求交点) UVA 11178 Morley's Theorem
题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /*********************************************** ...
- UVA 11178 Morley's Theorem 计算几何模板
题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...
随机推荐
- 开启和连接mysql服务器(win10为例)
1.windows图标右键,选择“计算机管理”: 2.展开左边的“ 服务和应用程序” 选项,点击“服务",找到 MySQL 服务器,点击左侧的 "启动",即可完成 MyS ...
- redo log日志内容备忘
检查点是一串递增的数字. 在两个检查点之间,存在有一个MLOG_FILE_NAME的文件,里面记录着space和路径和MLOG_CHECKPOINT的一个检查点. MLOG_FILE_NAME总是在上 ...
- 《零基础入门学习Python》【第一版】视频课后答案第006讲
python中被看作假:FALSE none 0 ‘ ’ " " ( ) [ ] { },其他一切都被解释为真 测试题答案: 0.Python 的 floor 除法现在使用 ...
- JavaScript正则表达式-断言
(?=reg_pattern):正前向断言 只有当字符串右侧出现匹配reg_pattern的字符时才匹配正则表达式. str = "img1.jpg,img2.jpg,img3.bmp&qu ...
- 循环链表的C风格实现(单向)
头文件: #ifndef _CIRCLELIST_H_ #define _CIRCLELIST_H_ typedef void CircleList; // typedef struct _tag_C ...
- python基础学习笔记——开发规范
> 编码 1 2 3 4 5 所有的 Python 脚本文件都应在文件头标上 # -*- coding:utf-8 -*- 用于设置编辑器,默认保存为 utf-8 格式. > 注释 ...
- 使用adb命令启查看已安装的Android应用的versionCode、versionName
列出已经安装的应用 adb shell pm list package C:\Users\CJTDEV003>adb shell pm list package package:com.sams ...
- 使用Phaser开发你的第一个H5游戏(一)
本文来自网易云社区 作者:王鸽 不知你是否还记得当年风靡一时的2048这个游戏,一个简单而又不简单的游戏,总会让你在空闲时间玩上一会儿. 在这篇文章里,我们将使用开源的H5框架--Phaser来重现这 ...
- 九度oj 题目1020:最小长方形
题目描述: 给定一系列2维平面点的坐标(x, y),其中x和y均为整数,要求用一个最小的长方形框将所有点框在内.长方形框的边分别平行于x和y坐标轴,点落在边上也算是被框在内. 输入: 测试输入 ...
- spring配置druid连接池和监控数据库访问性能
Druid连接池及监控在spring配置如下: <bean id="dataSource" class="com.alibaba.druid.pool.DruidD ...