就是给出一个等边三角形的三个顶点坐标

然后每一个角的三等分线会交错成一个三角形,求出这个三角形的顶点坐标

一開始。我题意理解错了……还以为是随意三角形,所以代码可以处理随意三角形的情况

我的做法:

通过旋转点的位置得到这些三等分线的直线方程,然后用高斯消元求交点

我的代码:

#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator -(const dot &a){return dot(x-a.x,y-a.y);}
dot operator +(const dot &a){return dot(x+a.x,y+a.y);}
double mod(){return sqrt(pow(x,2)+pow(y,2));}
double mul(const dot &a){return x*a.x+y*a.y;}
};
void gauss(double a[10][10])
{
int i,j,k,t,n=2;
for(i=0;i<n;i++)
{
t=i;
for(j=i+1;j<n;j++)
if(fabs(a[j][i])>fabs(a[t][i]))
t=i;
if(i!=t)
for(j=i;j<=n;j++)
swap(a[i][j],a[t][j]);
if(a[i][i]!=0)
for(j=i+1;j<n;j++)
for(k=n;k>=i;k--)
a[j][k]-=a[j][i]/a[i][i]*a[i][k];
}
for(i=n-1;i>-1;i--)
{
for(j=i+1;j<n;j++)
a[i][n]-=a[i][j]*a[j][n];
a[i][n]/=a[i][i];
}
}
dot ro(dot a,dot b,double c)
{
a=a-b;
a=dot(a.x*cos(c)-a.y*sin(c),a.x*sin(c)+a.y*cos(c));
return a+b;
}
int main()
{
pair<dot,dot>t;
dot a[3];
double b,c[10][10];
int n,i;
cin>>n;
while(n--)
{
for(i=0;i<3;i++)
scanf("%lf%lf",&a[i].x,&a[i].y); t.first=a[0]-a[1];t.second=a[2]-a[1];
b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[1];t.second=ro(a[2],a[1],b);
c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x; t.first=a[1]-a[2];t.second=a[0]-a[2];
b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[2];t.second=ro(a[0],a[2],b);
c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x; gauss(c); printf("%.6lf %.6lf ",c[0][2],c[1][2]); t.first=a[1]-a[2];t.second=a[0]-a[2];
b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[2];t.second=ro(a[0],a[2],b);
c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x; t.first=a[1]-a[0];t.second=a[2]-a[0];
b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[0];t.second=ro(a[1],a[0],b);
c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x; gauss(c); printf("%.6lf %.6lf ",c[0][2],c[1][2]); t.first=a[1]-a[0];t.second=a[2]-a[0];
b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[0];t.second=ro(a[1],a[0],b);
c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x; t.first=a[0]-a[1];t.second=a[2]-a[1];
b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
t.first=a[1];t.second=ro(a[2],a[1],b);
c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x; gauss(c); printf("%.6lf %.6lf\n",c[0][2],c[1][2]);
}
}

原题:

Problem D
Morley’s Theorem
Input:
Standard Input

Output: Standard Output

 Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.

 

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.

 

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers
. This six integers actually indicates that the Cartesian coordinates of point A, B and C are
 respectively. You can assume that the area of triangle ABC is not equal to zero,
 and the points A, B and C are in counter clockwise order.

 

Output

For each line of input you should produce one line of output. This line contains six floating point numbers
 separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are
 respectively. Errors less than 
 will be accepted.

 

Sample Input   Output for Sample Input

2 
1 1 2 2 1 2 
0 0 100 0 50 50

1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

                  

Problemsetters: Shahriar Manzoor

Special Thanks: Joachim Wulff

 

Source

Root :: Prominent Problemsetters ::

option=com_onlinejudge&Itemid=8&category=44">
Shahriar Manzoor

Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D ::
Examples

UVA - 11178-Morley’s Theorem的更多相关文章

  1. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA 11178 Morley's Theorem (坐标旋转)

    题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...

  3. UVA 11178 Morley's Theorem(几何)

    Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...

  4. UVa 11178:Morley’s Theorem(两射线交点)

    Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...

  5. UVA 11178 - Morley's Theorem 向量

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  6. Uva 11178 Morley's Theorem 向量旋转+求直线交点

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...

  7. UVA 11178 Morley's Theorem(旋转+直线交点)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...

  8. UVa 11178 Morley's Theorem (几何问题)

    题意:给定三角形的三个点,让你求它每个角的三等分线所交的顶点. 析:根据自己的以前的数学知识,应该很容易想到思想,比如D点,就是应该求直线BD和CD的交点, 以前还得自己算,现在计算机帮你算,更方便, ...

  9. 简单几何(求交点) UVA 11178 Morley's Theorem

    题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /*********************************************** ...

  10. UVA 11178 Morley's Theorem 计算几何模板

    题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...

随机推荐

  1. CPU 基础术语总结

    CPU CPU为 Central Processing Unit 的缩写.是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心( Control Unit).它的功能主要是解释计算机 ...

  2. java 比较String StringBuffer StringBuilder

    String 字符串常量StringBuffer 字符串变量(线程安全)StringBuilder 字符串变量(非线程安全) 简要的说, String 类型和 StringBuffer 类型的主要性能 ...

  3. python模块--random

    random主要用于生成随机字符串等,例如登录页面上随机字符串验证. random常用方法: import random print(random.randrange(1, 10)) # 返回1-10 ...

  4. ubuntu搭建LAMP全教程

    http://jingyan.baidu.com/article/a681b0de36ad683b18434691.html 本经验向你展示如何在ubuntu14.04 环境下搭建apache2 + ...

  5. jmeter历史版本下载

    https://archive.apache.org/dist/jmeter/binaries/

  6. 85. Spring Boot集成RabbitMQ【从零开始学Spring Boot】

    这一节我们介绍下Spring Boot整合RabbitMQ,对于RabbitMQ这里不过多的介绍,大家可以参考网络上的资源进行安装配置,本节重点是告诉大家如何在Spring Boot中使用Rabbit ...

  7. JAVA如何解压缩ZIP文档

    代码片段: package org.yu.units; import java.io.Closeable; import java.io.File; import java.io.FileInputS ...

  8. 树形DP专题

    DP是我的弱项, 此专题意在总结树形DP的解题思路. 最小代价遍历一棵树 给定一棵带边权的树 $T=(V,E)$ , 遍历它 (树的每个节点都访问至少一次) 所需的最小代价. 这里的代价由具体问题所定 ...

  9. P1582 倒水 (二进制)

    题目描述 一天,CC买了N个容量可以认为是无限大的瓶子,开始时每个瓶子里有1升水.接着~~CC发现瓶子实在太多了,于是他决定保留不超过K个瓶子.每次他选择两个当前含水量相同的瓶子,把一个瓶子的水全部倒 ...

  10. ubuntu mysql安装及需要其他主机连服务器mysql时的设置(error:10061)

    说明: 一个朋友在使用ubuntu-server 16.04安装mysql,设置远程访问的时候出现了问题,请我帮忙.但是,我也没有使用过ubuntu安装mysql,于是乎搜索了很多技术文件,比着葫芦画 ...