«问题描述:
给定一个由n 行数字组成的数字梯形如下图所示。梯形的第一行有m 个数字。从梯形
的顶部的m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶
至底的路径。
规则1:从梯形的顶至底的m条路径互不相交。
规则2:从梯形的顶至底的m条路径仅在数字结点处相交。
规则3:从梯形的顶至底的m条路径允许在数字结点相交或边相交。

«编程任务:
对于给定的数字梯形,分别按照规则1,规则2,和规则3 计算出从梯形的顶至底的m
条路径,使这m条路径经过的数字总和最大。
«数据输入:
由文件digit.in提供输入数据。文件的第1 行中有2个正整数m和n(m,n<=20),分别
表示数字梯形的第一行有m个数字,共有n 行。接下来的n 行是数字梯形中各行的数字。
第1 行有m个数字,第2 行有m+1 个数字,…。
«结果输出:
程序运行结束时,将按照规则1,规则2,和规则3 计算出的最大数字总和输出到文件
digit.out中。每行一个最大总和。
输入文件示例 输出文件示例
digit.in
2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1

1 1 10 12 1 1

digit.out

66
75
77

/*
第一个建图就是拆点(保证每个点只走一次),第二个建图是把两个点之间的边设为1,第三个inf随意搞。
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#define N 4010
#define inf 1000000000
using namespace std;
int a[N][N],head[N],dis[N],inq[N],fa[N],n,m,num,cnt,S,T;
struct node{int u,v,pre,f,w;}e[N];
void add(int u,int v,int f,int w){
e[++cnt].u=u;e[cnt].v=v;e[cnt].f=f;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
e[++cnt].u=v;e[cnt].v=u;e[cnt].f=;e[cnt].w=-w;e[cnt].pre=head[v];head[v]=cnt;
}
bool spfa(){
for(int i=;i<=T;i++) dis[i]=inf;
queue<int> q;q.push(S);inq[S]=;dis[S]=;
while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=head[u];i;i=e[i].pre)
if(e[i].f&&dis[e[i].v]>dis[u]+e[i].w){
dis[e[i].v]=dis[u]+e[i].w;
fa[e[i].v]=i;
if(!inq[e[i].v]){
inq[e[i].v]=;
q.push(e[i].v);
}
}
}
return dis[T]!=inf;
}
void mincost(){
int cost=;
while(spfa()){
int tmp=fa[T],x=inf;
while(tmp){ int u=e[tmp].u; x=min(x,e[tmp].f);
tmp=fa[e[tmp].u];
}
tmp=fa[T];
while(tmp){
e[tmp].f-=x;
e[tmp^].f+=x;
tmp=fa[e[tmp].u];
}
cost+=x*dis[T];
}
printf("%d\n",-cost);
}
int hao(int i,int j){
return (m*+i-)*(i-)/+j;
}
void build1(){
cnt=;memset(head,,sizeof(head));
for(int i=;i<=m;i++)
add(S,i,,-a[][i]);
for(int i=;i<n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j)+num,hao(i+,j),,-a[i+][j]),add(hao(i,j)+num,hao(i+,j+),,-a[i+][j+]);
for(int i=;i<=m+n-;i++)
add(hao(n,i)+num,T,,);
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j),hao(i,j)+num,,); }
void build2(){
cnt=;memset(head,,sizeof(head));
for(int i=;i<=m;i++)
add(S,i,,-a[][i]);
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j),hao(i+,j),,-a[i+][j]),add(hao(i,j),hao(i+,j+),,-a[i+][j+]);
for(int i=;i<=m+n-;i++)
add(hao(n,i),T,inf,);
}
void build3(){
cnt=;memset(head,,sizeof(head));
for(int i=;i<=m;i++)
add(S,i,,-a[][i]);
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
add(hao(i,j),hao(i+,j),inf,-a[i+][j]),add(hao(i,j),hao(i+,j+),inf,-a[i+][j+]);
for(int i=;i<=m+n-;i++)
add(hao(n,i),T,inf,);
}
int main(){
scanf("%d%d",&m,&n);num=(m*+n-)*n/;
S=;T=num*+;
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
scanf("%d",&a[i][j]);
build1();mincost();
build2();mincost();
build3();mincost();
return ;
}

数字梯形(cogs 738)的更多相关文章

  1. COGS738 [网络流24题] 数字梯形(最小费用最大流)

    题目这么说: 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径.规则1:从梯形的 ...

  2. 【wikioi】1913 数字梯形问题(费用流)

    http://wikioi.com/problem/1913/ 如果本题没有询问2和3,那么本题和蚯蚓那题一模一样.http://www.cnblogs.com/iwtwiioi/p/3935039. ...

  3. 【网络流24题】No.16 数字梯形问题 (不相交路径 最大费用流)

    [题意] 给定一个由 n 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动, 形成一条从梯形的顶至底的路径.规则 1: ...

  4. codevs 1913 数字梯形问题 费用流

    题目链接 给你一个数字梯形, 最上面一层m个数字, 然后m+1,......m+n-1个. n是层数. 在每个位置, 可以向左下或右下走.然后让你从最顶端的m个数字开始, 走出m条路径, 使得路过的数 ...

  5. P4013 数字梯形问题 网络流

    题目描述 给定一个由 nn 行数字组成的数字梯形如下图所示. 梯形的第一行有 mm 个数字.从梯形的顶部的 mm 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径. 分别 ...

  6. 【刷题】LOJ 6010 「网络流 24 题」数字梯形

    题目描述 给定一个由 \(n\) 行数字组成的数字梯形如下图所示.梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至 ...

  7. Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流)

    Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流) Description 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开 ...

  8. P4013 数字梯形问题 网络流二十四题

    P4013 数字梯形问题 题目描述 给定一个由 nn 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形 ...

  9. 【费用流】【网络流24题】【P4013】 数字梯形问题

    Description 给定一个由 \(n\) 行数字组成的数字梯形如下图所示. 梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成 ...

随机推荐

  1. lwz-过去一年的总结(15-16)

    今天2016年2月6日,还有1个半小时的时间,就要离开这个工作了9个月的地方,准备前往下个城市了.趁着这点时间,来给过去的一年做个即兴的总结吧. 2015年的2月份,在以前同学的提议和支持下,我重新学 ...

  2. CPP-基础:单目运算符重载

    关于++运算符前置和后置重载的实现实例: #include <iostream> using namespace std; //创建时钟类 class Clock { public: Cl ...

  3. 摘抄 Promise原理

    1.简单的promise: //极简promise雏形 function Promise(fn){ var value = null; callbacks = [];//callback为数组,因为可 ...

  4. DP入门练习

    T1 题目:codevs4815江哥的dp题a codevs4815 一个简单的DP,注意开long long(不然会全WA),以及初始条件(这题有负数,所以要把f设成极小值.还要保证转移正确). # ...

  5. docker 运行tomcat 并部署 java web项目

    以下tomcat官方镜像中tomcat:7 和tomcat:8的目录. CATALINA_BASE: /usr/local/tomcat CATALINA_HOME: /usr/local/tomca ...

  6. nginx + 一个端口 部署多个单页应用(history模式)

    目前web开发 使用一般前后端分离技术,并且前端负责路由.为了美观,会采用前端会采用h5 history 模式的路由.但刷新页面时,前端真的会按照假路由去后端寻找文件.此时,后端必须返回index(i ...

  7. perl中foreach(二)

    本文和大家重点讨论一下Perl foreach命令的用法,Perl foreach循环中控制变量的值会被Perl自动保存和恢复.当循环进行时,是没有办法改变其值的.循环结束时,变量的值会回到循环开始前 ...

  8. SVN 如何提交 SO 库文件

    今天提交代码时候发现,svn add 还是 svn st 均查看不到想要提交的 so 文件. 后来才知道原来是配置文件出了问题,把so文件的提交给屏蔽掉了. 修改步骤如下: 1.Ubuntu 系统,点 ...

  9. python面向对象(C3算法)(六)

    1. 了解python2和python3类的区别 python2在2.3之前使用的是经典类, 2.3之后, 使用的是新式类 2. 经典类的MRO 树形结构的深度优先遍历 -> 树形结构遍历 cl ...

  10. luogu1129 [ZJOI2007]矩阵游戏

    其实,只用考虑某一行能否放到某一行就行了 #include <iostream> #include <cstring> #include <cstdio> usin ...